20 resultados para Near-Optimum power allocation

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power allocation is studied for fixed-rate transmission over block-fading channels with arbitrary continuous fading distributions and perfect transmitter and receiver channel state information. Both short- and long-term power constraints for arbitrary input distributions are considered. Optimal power allocation schemes are shown to be direct applications of previous results in the literature. It is shown that the short- and long-term outage exponents for arbitrary input distributions are related through a simple formula. The formula is useful to predict when the delay-limited capacity is positive. Furthermore, this characterization is useful for the design of efficient coding schemes for this relevant channel model. © 2010 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Trench Insulated Gate Bipolar Transistor (IGBT) is the most promising structure for the next generation of power semiconductor devices with wide applications ranging from motor control (1-4 kV) to HVDC (6.5 kV). Here we present for the first time an optimum design of a 1.4kV Trench IGBT using a new, fully integrated optimisation system comprising process and device simulators and the RSM optimiser. The use of this new TCAD system has contributed largely to realizing devices with characteristics far superior to the previous DMOS generation of IGBTs. Full experimental results on 1.4kV Trench IGBTs which are in excellent agreement with the TCAD predictions are reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

End-to-end real-time experimental demonstrations are reported, for the first time, of aggregated 11.25Gb/s over 26.4km standard SMF, optical orthogonal frequency division multiple access (OOFDMA) PONs with adaptive dynamic bandwidth allocation (DBA). The demonstrated intensity-modulation and direct-detection (IMDD) OOFDMA PON system consists of two optical network units (ONUs), each of which employs a DFB-based directly modulated laser (DML) or a VCSEL-based DML for modulating upstream signals. Extensive experimental explorations of dynamic OOFDMA PON system properties are undertaken utilizing identified optimum DML operating conditions. It is shown that, for simultaneously achieving acceptable BERs for all upstream signals, the OOFDMA PON system has a >3dB dynamic ONU launch power variation range, and the BER performance of the system is insusceptible to any upstream symbol offsets slightly smaller than the adopted cyclic prefix. In addition, experimental results also indicate that, in addition to maximizing the aggregated system transmission capacity, adaptive DBA can also effectively reduce imperfections in transmission channel properties without affecting signal bit rates offered to individual ONUs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a series of near-UV (∼385 nm) emitting LEDs, consisting of high efficiency InGaN/AlInGaN QWs in the active region, was investigated. Significantly reduced roll-over of efficiency at high current density was found compared to InGaN/GaN LEDs emitting at a similar wavelength. The importance of optical cavity effects in flip-chip geometry devices has also been investigated. The light output was enhanced by more than a factor of 2 when the lightemitting region was located at an anti-node position with respect to a high reflectivity current injection mirror. A power of 0.49 mW into a numerical aperture of 0.5 was obtained for a junction area of 50μm in diameter and a current of 30 mA, corresponding to a radiance of 30 W/cm2/str.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a high peak power femtosecond modelocked VECSEL and its application as a drive laser for an all semiconductor terahertz time domain spectrometer. The VECSEL produced near-transform-limited 335 fs sech2 pulses at a fundamental repetition rate of 1 GHz, a centre wavelength of 999 nm and an average output power of 120 mW. We report on the effect that this high peak power and short pulse duration has on our generated THz signal.

Relevância:

30.00% 30.00%

Publicador: