10 resultados para NSF
em Cambridge University Engineering Department Publications Database
Resumo:
Manual inspection is required to determine the condition of damaged buildings after an earthquake. The lack of available inspectors, when combined with the large volume of inspection work, makes such inspection subjective and time-consuming. Completing the required inspection takes weeks to complete, which has adverse economic and societal impacts on the affected population. This paper proposes an automated framework for rapid post-earthquake building evaluation. Under the framework, the visible damage (cracks and buckling) inflicted on concrete columns is first detected. The damage properties are then measured in relation to the column's dimensions and orientation, so that the column's load bearing capacity can be approximated as a damage index. The column damage index supplemented with other building information (e.g. structural type and columns arrangement) is then used to query fragility curves of similar buildings, constructed from the analyses of existing and on-going experimental data. The query estimates the probability of the building being in different damage states. The framework is expected to automate the collection of building damage data, to provide a quantitative assessment of the building damage state, and to estimate the vulnerability of the building to collapse in the event of an aftershock. Videos and manual assessments of structures after the 2009 earthquake in Haiti are used to test the parts of the framework.
Resumo:
A number of methods are commonly used today to collect as-built spatial data (time-of-flight, visual triangulation, etc.). However, current practice lacks a solution that is accurate, automatic and cost-efficient at the same time. LiDARmethods generate high resolution depth information, but the significant cost of the equipment counteracts their benefits for the majority of construction projects. This is true especially for small projects, where projected savings hardly justify adopting this technology. Vision-based technologies, such as videogrammetry, is potentially able to address the existing limitations.
Resumo:
As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.