9 resultados para NHS
em Cambridge University Engineering Department Publications Database
Resumo:
In recent years, the healthcare sector has adopted the use of operational risk assessment tools to help understand the systems issues that lead to patient safety incidents. But although these problem-focused tools have improved the ability of healthcare organizations to identify hazards, they have not translated into measurable improvements in patient safety. One possible reason for this is a lack of support for the solution-focused process of risk control. This article describes a content analysis of the risk management strategies, policies, and procedures at all acute (i.e., hospital), mental health, and ambulance trusts (health service organizations) in the East of England area of the British National Health Service. The primary goal was to determine what organizational-level guidance exists to support risk control practice. A secondary goal was to examine the risk evaluation guidance provided by these trusts. With regard to risk control, we found an almost complete lack of useful guidance to promote good practice. With regard to risk evaluation, the trusts relied exclusively on risk matrices. A number of weaknesses were found in the use of this tool, especially related to the guidance for scoring an event's likelihood. We make a number of recommendations to address these concerns. The guidance assessed provides insufficient support for risk control and risk evaluation. This may present a significant barrier to the success of risk management approaches in improving patient safety. © 2013 Society for Risk Analysis.
Resumo:
AIMS: Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. MATERIALS & METHODS: The analysis is based on 20 interviews with leading industrialists in the field. RESULTS: The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. CONCLUSION: Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.
Resumo:
This paper discusses the application of Discrete Event Simulation (DES) in modelling the complex relationship between patient types, case-mix and operating theatre allocation in a large National Health Service (NHS) Trust in London. The simulation model that was constructed described the main features of nine theatres, focusing on operational processes and patient throughput times. The model was used to test three scenarios of case-mix and to demonstrate the potential of using simulation modelling as a cost effective method for understanding the issues of healthcare operations management and the role of simulation techniques in problem solving. The results indicated that removing all day cases will reduce patient throughput by 23.3% and the utilization of the orthopaedic theatre in particular by 6.5%. This represents a case example of how DES can be used by healthcare managers to inform decision making. © 2008 IEEE.
Resumo:
Since the discovery of Carbon Nanotubes (CNTs) by Iijima in 1991[1, 2], there has been an explosion of research into the physical and chemical properties of this novel material. CNT based biosensors can play an important role in amperometric, immunosensor and nucleic-acid sensing devices, e.g. for detection of life threatening biological agents in time of war or in terrorist attacks, saving life and money for the NHS. CNTs offer unique advantages in several areas, like high surfacevolume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and CNT based sensors generally have higher sensitivities and lower detection limit than conventional ones. In this review, recent advances in biosensors utilising carbon nanotubes and carbon nanotube fibres will be discussed. The synthesis methods, nanostructure approaches and current developments in biosensors using CNTs will be introduced in the first part. In the second part, the synthesis methods and up-to-date progress in CNT fibre biosensors will be reviewed. Finally, we briefly outline some exciting applications for CNT and CNT fibres which are being targeted. By harnessing the continual advancements in micro and nano- technology, the functionality and capability of CNT-based biosensors will be enhanced, thus expanding and enriching the possible applications that can be delivered by these devices. © 2012 Bentham Science Publishers. All rights reserved.