4 resultados para Multiple testing
em Cambridge University Engineering Department Publications Database
Resumo:
When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.
Resumo:
Distributed hybrid testing is a natural extension to and builds upon the local hybrid testing technique. Taking advantage of the hybrid nature of the test, it allows a sharing of resources and expertise between researchers from different disciplines by connecting multiple geographically distributed sites for joint testing. As part of the UK-NEES project, a successful series of three-site distributed hybrid tests have been carried out between Bristol, Cambridge and Oxford Universities. The first known multi-site distributed hybrid tests in the UK, they connected via a dedicated fibre network, using custom software, the geotechnical centrifuge at Cambridge to structural components at Bristol and Oxford. These experiments were to prove the connection and useful insights were gained into the issues involved with this distributed environment. A wider aim is towards providing a flexible testing framework to facilitate multi-disciplinary experiments such as the accurate investigation of the influence of foundations on structural systems under seismic and other loading. Time scaling incompatibilities mean true seismic soil structure interaction using a centrifuge at g is not possible, though it is clear that distributed centrifuge testing can be valuable in other problems. Development is continuing to overcome the issues encountered, in order to improve future distributed tests in the UK and beyond.
Resumo:
The monopile is at present the most widely applied foundation concept for offshore wind turbines. Monopiles are designed utilising the well-established p-y method. Despite being well-established, there are multiple issues and limitations regarding its use. Investigation into the lateral behaviour of monopiles was carried out by performing monotonic and cyclic lateral load tests on an aluminium model monopile in the centrifuge. The monotonic responses and the behaviour of the monopile are described. Differences between the experimental and DNV design p-y curves and their implications are discussed. Efforts to characterise the shear force acting at the pile toe are also discussed. The results highlight the possible deficiencies of utilising the conventional DNV design p-y curves to design monopiles to resist cyclic lateral loads and the importance of research into the cyclic loading behaviour of monopiles to better improve their design to resist long-term cyclic loads. © 2014 Taylor & Francis Group.