87 resultados para Multi-objective algorithm
em Cambridge University Engineering Department Publications Database
Resumo:
This paper presents a preliminary study which describes and evaluates a multi-objective (MO) version of a recently created single objective (SO) optimization algorithm called the "Alliance Algorithm" (AA). The algorithm is based on the metaphorical idea that several tribes, with certain skills and resource needs, try to conquer an environment for their survival and to ally together to improve the likelihood of conquest. The AA has given promising results in several fields to which has been applied, thus the development of a MO variant (MOAA) is a natural extension. Here the MOAA's performance is compared with two well-known MO algorithms: NSGA-II and SPEA-2. The performance measures chosen for this study are the convergence and diversity metrics. The benchmark functions chosen for the comparison are from the ZDT and OKA families and the main classical MO problems. The results show that the three algorithms have similar overall performance. Thus, it is not possible to identify a best algorithm for all the problems; the three algorithms show a certain complementarity because they offer superior performance for different classes of problems. © 2012 IEEE.
Resumo:
This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.
Resumo:
A new version of the Multi-objective Alliance Algorithm (MOAA) is described. The MOAA's performance is compared with that of NSGA-II using the epsilon and hypervolume indicators to evaluate the results. The benchmark functions chosen for the comparison are from the ZDT and DTLZ families and the main classical multi-objective (MO) problems. The results show that the new MOAA version is able to outperform NSGA-II on almost all the problems.
Resumo:
Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.
Resumo:
Pile reuse has become an increasingly popular option in foundation design, mainly due to its potential cost and environmental benefits and the problem of underground congestion in urban areas. However, key geotechnical concerns remain regarding the behavior of reused piles and the modeling of foundation systems involving old and new piles to support building loads of the new structure. In this paper, a design and analysis tool for pile reuse projects will be introduced. The tool allows coupling of superstructure stiffness with the foundation model, and includes an optimization algorithm to obtain the best configuration of new piles to work alongside reused piles. Under the concept of Pareto Optimality, multi-objective optimization analyses can also reveal the relationship between material usage and the corresponding foundation performance, providing a series of reuse options at various foundation costs. The components of this analysis tool will be discussed and illustrated through a case history in London, where 110 existing piles are reused at a site to support the proposed new development. The case history reveals the difficulties faced by foundation reuse in urban areas and demonstrates the application of the design tool to tackle these challenges. © ASCE 2011.
Resumo:
This paper considers the aerodynamic design optimisation of turbomachinery blades from a multi-objective perspective. The aim is to improve the performance of a specific stage and eventually of the whole engine. The integrated system developed for this purpose is described. It combines an existing geometry parameterisation scheme, a well-established CFD package and a novel multi-objective variant of the Tabu Search optimisation algorithm. Its performance is illustrated through a case study in which the flow characteristics most important to the overall performance of turbomachinery blades are optimised.
Resumo:
This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.
Resumo:
The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed uid-structure interaction benchmark which describes the self-induced elastic deformation of a beam attached to a cylinder in laminar channel ow. The optimized ow characteristics of the aforementioned geometrical arrangement illustrate the performance of the system in two dimensions. Special emphasis is given to the analysis of the simulation package, which is of high accuracy and is the core of application. The design process identifies the best combination of ow features for optimal system behavior and the most important objectives. In addition, the presented methodology has the potential to run in parallel, which will significantly speed-up the elapsed time. Finite Element Method (FEM), Fluid-Structure Interaction (FSI), Multi-Ojective Tabu search (MOTS2). Copyright © 2013 Tech Science Press.
Resumo:
We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality. © 2012 AIAA.
Resumo:
The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO. © 2013 IEEE.
Resumo:
The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.