21 resultados para Multi-camera networks

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A parallel processing network derived from Kanerva's associative memory theory Kanerva 1984 is shown to be able to train rapidly on connected speech data and recognize further speech data with a label error rate of 0·68%. This modified Kanerva model can be trained substantially faster than other networks with comparable pattern discrimination properties. Kanerva presented his theory of a self-propagating search in 1984, and showed theoretically that large-scale versions of his model would have powerful pattern matching properties. This paper describes how the design for the modified Kanerva model is derived from Kanerva's original theory. Several designs are tested to discover which form may be implemented fastest while still maintaining versatile recognition performance. A method is developed to deal with the time varying nature of the speech signal by recognizing static patterns together with a fixed quantity of contextual information. In order to recognize speech features in different contexts it is necessary for a network to be able to model disjoint pattern classes. This type of modelling cannot be performed by a single layer of links. Network research was once held back by the inability of single-layer networks to solve this sort of problem, and the lack of a training algorithm for multi-layer networks. Rumelhart, Hinton & Williams 1985 provided one solution by demonstrating the "back propagation" training algorithm for multi-layer networks. A second alternative is used in the modified Kanerva model. A non-linear fixed transformation maps the pattern space into a space of higher dimensionality in which the speech features are linearly separable. A single-layer network may then be used to perform the recognition. The advantage of this solution over the other using multi-layer networks lies in the greater power and speed of the single-layer network training algorithm. © 1989.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The route planning problem for an order in freight transportation involves the selection of the best route for its transportation given a set of options that the network can offer. In its adaptive (or dynamic) version, the problem deals with the planning of a new route for an order while it is actually in transit typically because part or all of its pre-selected route is blocked or disrupted. In the intelligent product approach we are proposing, an order would be capable of identifying and evaluating such new routes in an automated manner and choosing the most preferable one without the intervention of humans. Because such approaches seek to mirror (and then automate) human decision making, in this paper we seek to identify new ways for dynamic route planning in industrial logistics inspired by the way people make similar decisions about their journey when they travel in multi-modal networks. We propose a new simulation game as a methodological tool for capturing their travel behaviour and we use it in this study. The results show that a simulation game can be used for capturing strategies and tactics of travellers and that intelligent products can provide a proper platform for the usage of such strategies in freight logistics. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a self-forwarding packet-switched optical network with bit-parallel multi-wavelength labels. We experimentally demonstrate transmission of variable-length optical packets over 80 km of fiber and switching over a 1×4 multistage switch with two stages. © 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Node placement plays a significant role in the effective and successful deployment of Wireless Sensor Networks (WSNs), i.e., meeting design goals such as cost effectiveness, coverage, connectivity, lifetime and data latency. In this paper, we propose a new strategy to assist in the placement of Relay Nodes (RNs) for a WSN monitoring underground tunnel infrastructure. By applying for the first time an accurate empirical mean path loss propagation model along with a well fitted fading distribution model specifically defined for the tunnel environment, we address the RN placement problem with guaranteed levels of radio link performance. The simulation results show that the choice of appropriate path loss model and fading distribution model for a typical environment is vital in the determination of the number and the positions of RNs. Furthermore, we adapt a two-tier clustering multi-hop framework in which the first tier of the RN placement is modelled as the minimum set cover problem, and the second tier placement is solved using the search-and-find algorithm. The implementation of the proposed scheme is evaluated by simulation, and it lays the foundations for further work in WSN planning for underground tunnel applications. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear modelling ability of neural networks has been widely recognised as an effective tool to identify and control dynamic systems, with applications including nonlinear vehicle dynamics which this paper focuses on using multi-layer perceptron networks. Existing neural network literature does not detail some of the factors which effect neural network nonlinear modelling ability. This paper investigates into and concludes on required network size, structure and initial weights, considering results for networks of converged weights. The paper also presents an online training method and an error measure representing the network's parallel modelling ability over a range of operating conditions. Copyright © 2010 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we compare Multi-Layer Perceptrons (a neural network type) with Multivariate Linear Regression in predicting birthweight from nine perinatal variables which are thought to be related. Results show, that seven of the nine variables, i.e., gestational age, mother's body-mass index (BMI), sex of the baby, mother's height, smoking, parity and gravidity, are related to birthweight. We found no significant relationship between birthweight and each of the two variables, i.e., maternal age and social class.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores supply network integration in complex product service systems involving close collaboration between primes. Four case study networks are studied (aerospace, naval, power and telecoms), each involving equipment manufacture and service provision. Factors that support network integration, identified from the literature and refined in the in-depth pilot case, were used to explore which processes support integration of the extended enterprise. Results suggests that a select set of processes support integration of the extended enterprise and that the absence of a shared view on these critical enabling processes results from contextual complexity of the network rather than from competing commercial interests. Copyright © 2011 Inderscience Enterprises Ltd.