6 resultados para Motor function recovery

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated a resonant refractive nonlinearity in a semiconductor waveguide by measuring intensity dependent phase shifts and bias-dependent recovery times. The measurements were performed on an optimized 750-μm-long AR coated buried heterostructure MQW p-i-n waveguide with a bandedge at 1.48 μm. Figure 1 shows the experimental arrangement. The mode-locked color center laser was tuned to 50 meV beyond the bandedge and 8 ps pulses with peak incident power up to 57 W were coupled into the waveguide. Some residual bandtail absorption remains at this wavelength and this is sufficient to cause carriers to be photogenerated and these give rise to a refractive nonlinearity, predominantly by plasma and bandfilling effects. A Fabry-Perot interferometer is used to measure the spectrum of the light which exits the waveguide. The nonlinearity within the guide causes self phase modulation (SPM) of the light and a study of the spectrum allows information to be recovered on the magnitude and recovery time of the nonlinear phase shift with a reasonable degree of accuracy. SPM spectra were recorded for a variety of pulse energies coupled into he unbiased waveguide. Figure 2 shows the resultant phase shift measured from the SPM spectra as a function of pulse energy. The relationship is a linear one, indicating that no saturation of the nonlinearity occurs for coupled pulse energies up to 230 pJ. A π phase shift, the minimum necessary for an all-optical switch, is obtained for a coupled pulse energy of 57 pJ while the maximum phase shift, 4 π, was measured for 230 pJ. The SPM spectra were highly asymmetric with pulse energy shifted to higher frequencies. Such spectra are characteristic of a slow, negative nonlinearity. This relatively slow speed is expected for the unbiased guide as the recovery time will be of the order of the recombination time of the photogenerated electrons, about 1 ns for InGaAsP material. In order to reduce the recovery time of the nonlinearity, it is necessary to remove the photogenerated carriers from the waveguide by a process other than recombination. One such technique is to apply a reverse bias to the waveguide in order to sweep the carriers out. Figure 3 shows the effect on the recovery time of the nonlinearity of applying reverse bias to the waveguide for 230 pJ coupled power. The recovery time was reduced from one much longer than the length of the pulse, estimated to be about 1 ns, at zero bias to 18 ± 3 ps for a bias voltage greater than -4 V. This compares with a value of 24 ps obtained in a bulk waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent study demonstrates involvement of primary motor cortex in task-dependent modulation of rapid feedback responses; cortical neurons resolve locally ambiguous sensory information, producing sophisticated responses to disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2012 Elsevier Ltd. Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.