7 resultados para Motor development
em Cambridge University Engineering Department Publications Database
Resumo:
Pronunciation is an important part of speech acquisition, but little attention has been given to the mechanism or mechanisms by which it develops. Speech sound qualities, for example, have just been assumed to develop by simple imitation. In most accounts this is then assumed to be by acoustic matching, with the infant comparing his output to that of his caregiver. There are theoretical and empirical problems with both of these assumptions, and we present a computational model- Elija-that does not learn to pronounce speech sounds this way. Elija starts by exploring the sound making capabilities of his vocal apparatus. Then he uses the natural responses he gets from a caregiver to learn equivalence relations between his vocal actions and his caregiver's speech. We show that Elija progresses from a babbling stage to learning the names of objects. This demonstrates the viability of a non-imitative mechanism in learning to pronounce.
Resumo:
We have built a four-pole high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) in our lab. At this stage, the HTS PMSM uses two 2G HTS racetrack coils, which are YBCO wires, type 344 from AMSC, and four conventional copper coils as stator windings. 75 YBCO bulks are mounted on the surface of the rotor. After the pulsed field magnetization system had been developed and tested in our lab in 2011, the rotor can trap a four-pole magnetic field. This makes HTS bulks possible for motor application, other than HTS coils. The HTS PMSM can successfully run at a low speed of around 150 rpm for an initial test. This paper states theoretical and practical works on the HTS PMSM's operation including HTS motor drive development and its application. © 2002-2011 IEEE.
Resumo:
An inherent trade-off exists in simulation model development and employment: a trade-off between the level of detail simulated and the simulation models computational cost. It is often desirable to simulate a high level of detail to a high degree of accuracy. However, due to the nature of design optimisation, which requires a large number of design evaluations, the application of such simulation models can be prohibitively expensive. A induction motor modelling approache to reduce the computational cost while maintaining a high level of detail and accuracy in the final design is presented. © 2012 IEEE.
Resumo:
The development of cryogenic technology and high temperature superconducting (HTS) materials has seen continued interest worldwide in the development of HTS machines since the late 1980s. In this paper, the authors present a conceptual design of a 2.5 MW class synchronous motor. The structure of the motor is specified and the motor performance is analyzed via a three-dimensional model using the finite element method (FEM). Rotor optimization is carried out to decrease the harmonic components in the air gap field generated by HTS tapes. Based on the results of this 3D simulation, the determination of the operating conditions and load angle is discussed with consideration to the HTS material properties. The economic viability of air-core and iron-core designs is compared. The results show that this type of HTS machine has the potential to achieve an economic, efficient and effective machine design, which operates at a low load angle, and this design process provides a practical way to simulate and analyze the performance of such machines.
Resumo:
In mammals, the development of reflexes is often regarded as an innate process. However, recent findings show that fetuses are endowed with favorable conditions for ontogenetic development. In this article, we hypothesize that the circuitry of at least some mammalian reflexes can be self-organized from the sensory and motor interactions brought forth in a musculoskeletal system. We focus mainly on three reflexes: the myotatic reflex, the reciprocal inhibition reflex, and the reverse myotatic reflex. To test our hypothesis, we conducted a set of experiments on a simulated musculoskeletal system using pairs of agonist and antagonist muscles. The reflex connectivity is obtained by producing spontaneous motor activity in each muscle and by correlating the resulting sensor and motor signals. Our results show that, under biologically plausible conditions, the reflex circuitry thus obtained is consistent with that identified in relation to the analogous mammalian reflexes. In addition, they show that the reflex connectivity obtained depends on the morphology of the musculoskeletal system as well as on the environment that it is embedded in.
Resumo:
As observed in nature, complex locomotion can be generated based on an adequate combination of motor primitives. In this context, the paper focused on experiments which result in the development of a quality criterion for the design and analysis of motor primitives. First, the impact of different vocabularies on behavioural diversity, robustness of prelearned behaviours and learning process is elaborated. The experiments are performed with the quadruped robot MiniDog6M for which a running and standing up behaviour is implemented. Further, a reinforcement learning approach based on Q-learning is introduced which is used to select an adequate sequence of motor primitives. © 2006 Springer-Verlag Berlin Heidelberg.