16 resultados para Morphological descriptors
em Cambridge University Engineering Department Publications Database
Resumo:
In recent years, the use of morphological decomposition strategies for Arabic Automatic Speech Recognition (ASR) has become increasingly popular. Systems trained on morphologically decomposed data are often used in combination with standard word-based approaches, and they have been found to yield consistent performance improvements. The present article contributes to this ongoing research endeavour by exploring the use of the 'Morphological Analysis and Disambiguation for Arabic' (MADA) tools for this purpose. System integration issues concerning language modelling and dictionary construction, as well as the estimation of pronunciation probabilities, are discussed. In particular, a novel solution for morpheme-to-word conversion is presented which makes use of an N-gram Statistical Machine Translation (SMT) approach. System performance is investigated within a multi-pass adaptation/combination framework. All the systems described in this paper are evaluated on an Arabic large vocabulary speech recognition task which includes both Broadcast News and Broadcast Conversation test data. It is shown that the use of MADA-based systems, in combination with word-based systems, can reduce the Word Error Rates by up to 8.1 relative. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We propose a new approach for quantifying regions of interest (ROIs) in medical image data. Rotationally invariant shape descriptors (ISDs) were applied to 3D brain regions extracted from MRI scans of 5 Parkinson's patients and 10 control subjects. We concentrated on the thalamus and the caudate nucleus since prior studies have suggested they are affected in Parkinson's disease (PD). In the caudate, both the ISD and volumetric analyses found significant differences between control and PD subjects. The ISD analysis however revealed additional differences between the left and right caudate nuclei in both control and PD subjects. In the thalamus, the volumetric analysis showed significant differences between PD and control subjects, while ISD analysis found significant differences between the left and right thalami in control subjects but not in PD patients, implying disease-induced shape changes. These results suggest that employing ISDs for ROI characterization both complements and extends traditional volumetric analyses. © 2006 IEEE.
Resumo:
In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.