3 resultados para Model des cinq facteurs
em Cambridge University Engineering Department Publications Database
Resumo:
This paper discusses the application of Discrete Event Simulation (DES) in modelling the complex relationship between patient types, case-mix and operating theatre allocation in a large National Health Service (NHS) Trust in London. The simulation model that was constructed described the main features of nine theatres, focusing on operational processes and patient throughput times. The model was used to test three scenarios of case-mix and to demonstrate the potential of using simulation modelling as a cost effective method for understanding the issues of healthcare operations management and the role of simulation techniques in problem solving. The results indicated that removing all day cases will reduce patient throughput by 23.3% and the utilization of the orthopaedic theatre in particular by 6.5%. This represents a case example of how DES can be used by healthcare managers to inform decision making. © 2008 IEEE.
Resumo:
It is shown that a new mixed nonlinear/eddy viscosity LES model reproduces profiles better than a number of competing nonlinear and mixed models for plane channel flow. The objective is an LES method that produces a fully resolved turbulent boundary layer and could be applied to a variety of aerospace problems that are currently studied with RANS, RANS-LES, or DES methods that lack a true turbulent boundary layer. There are two components to the new model. One an eddy viscosity based upon the advected subgrid scale energy and a relatively small coefficient. Second, filtered nonlinear terms based upon the Leray regularization. Coefficients for the eddy viscosity and nonlinear terms come from LES tests in decaying, isotropic turbulence. Using these coefficients, the velocity profile matches measurements data at Reτ ≈ 1000 exactly. Profiles of the components of kinetic energy have the same shape as in the experiment, but the magnitudes differ by about 25%. None of the competing LES gets the shape correct. This method does not require extra operations at the transition between the boundary layer and the interior flow.
Resumo:
Surprisingly expensive to compute wall distances are still used in a range of key turbulence and peripheral physics models. Potentially economical, accuracy improving differential equation based distance algorithms are considered. These involve elliptic Poisson and hyperbolic natured Eikonal equation approaches. Numerical issues relating to non-orthogonal curvilinear grid solution of the latter are addressed. Eikonal extension to a Hamilton-Jacobi (HJ) equation is discussed. Use of this extension to improve turbulence model accuracy and, along with the Eikonal, enhance Detached Eddy Simulation (DES) techniques is considered. Application of the distance approaches is studied for various geometries. These include a plane channel flow with a wire at the centre, a wing-flap system, a jet with co-flow and a supersonic double-delta configuration. Although less accurate than the Eikonal, Poisson method based flow solutions are extremely close to those using a search procedure. For a moving grid case the Poisson method is found especially efficient. Results show the Eikonal equation can be solved on highly stretched, non-orthogonal, curvilinear grids. A key accuracy aspect is that metrics must be upwinded in the propagating front direction. The HJ equation is found to have qualitative turbulence model improving properties. © 2003 by P. G. Tucker.