64 resultados para Mixing machinery
em Cambridge University Engineering Department Publications Database
Resumo:
In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.
Resumo:
The article provides information on a study on the potential of mixing ventilation in reducing energy costs in buildings such as theaters and schools. The study found that neither Manchester’s Contact Theatre and the Garrick Theatre in Lichfield in England is operating according to the displacement-ventilation principle upon which they were designed. Hybrid mixing ventilation has an important impact on both the ventilation rate and the thermal comfort of the theatres.
Resumo:
We investigate the steady state natural ventilation of a room heated at the base and consisting of two vents at different levels. We explore how the air flow rate and internal temperature relative to the exterior vary as a function of the vent areas, position of the vents and heat load in order to establish appropriate ventilation strategies for a room. When the room is heated by a distributed source, the room becomes well mixed and the steady state ventilation rate depends on the heating rate, the area of the vents and the distance between the lower and upper level vents. However, when the room is heated by a localised source the room becomes stratified. If the effective ventilation area is sufficiently large, then the interface separating the two layers lies above the inlet vent and the lower layer is comprised of ambient fluid. In this case the upper layer is warmer than in the well mixed case and the ventilation rate is smaller. However, if the effective area for ventilation is sufficiently small, then the interface separating the two layers lies below the inlet vent and the lower layer is comprised of warm fluid which originates as the cold incoming fluid mixes during descent from the vent through the upper layer. In this case both the ventilation rate and the upper layer temperature are the same as in the case of a distributed heat load. As the vertical separation between lower and upper level vents decreases, then the temperature difference between the layers falls to zero and the room becomes approximately well mixed. These findings suggest how the appropriate ventilation strategy for a room can be varied depending on the exterior temperature, with mixing ventilation more suitable for winter conditions and displacement ventilation for warmer external temperatures.