11 resultados para Microstrip lines
em Cambridge University Engineering Department Publications Database
Resumo:
It becomes increasingly difficult to make continuous metal lines with well defined thickness and edges by the lift-off technique as the line width is decreased. We describe in this paper a technique in which the combination of high resolution electron beam lithography and ionized cluster beam (ICB) deposition has enabled very high quality gold lines ({all equal to}25nm wide) to be obtained on thick single crystal silicon substrates. © 1990.
Resumo:
Model tests for global design verification of deepwater floating structures cannot be made at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation techniques. In such a method the upper sections of each line are modelled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model, that aims to simulate the remainder of the line. The rationale for this is that in deep water the transverse elastic waves of a line are likely to decay before they are reflected at the seabed. The focus of this paper is the verification of this rationale and the ongoing work, which is considering ways to produce a truncation model. Transverse dynamics of a mooring line are modelled using the equations of motion of an inextensible taut string, submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. Nonlinear hydrodynamic damping is included; bending and VIV effects are neglected. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it is very useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. Initial efforts in developing a truncated model show that a linearized numerical solution in the frequency domain matches very closely the exact benchmark. Copyright © 2011 by ASME.
Resumo:
This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Near-field measurements were performed at X-band frequencies for graphene on copper microstrip transmission lines. An improvement in radiation of 0.88 dB at 10.2 GHz is exhibited from the monolayer graphene antenna which has dc sheet resistivity of 985 Ω/sq. Emission characteristics were validated via ab initio simulations and compared to empirical findings of geometrically comparable copper patches. This study contributes to the current knowledge of the electronic properties of graphene. © 2013 AIP Publishing LLC.
Resumo:
In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.