3 resultados para Microscopie électronique à balayage environnemental (ESEM)

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and ΔmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the ΔmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and δmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the δmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ tests in deep waterWest African clays show crust-like shear strengths within the top few metres of sediment. Typical strength profiles show su rising from mud-line to 10 kPa to 15 kPa before dropping back to normally consolidated strengths of 3 kPa to 4 kPa by 1.5m to 2m depth. A Cam-shear device is used to better understand the mechanical behaviour of undisturbed crust samples under pipelines. Extremely variable peak and residual shear strengths are observed for a range of pipeline consolidation stresses and test shear rates, with residual strengths approximating zero. ESEM of undisturbed samples and wet-sieved samples from various core depths show the presence of numerous randomly-located groups of invertebrate faecal pellets. It is therefore proposed that the cause of strength variability during shear testing and, indeed, of the crust's origin, is the presence of random groups of faecal pellets within the sediment. © 2011 Taylor & Francis Group, London.