131 resultados para Measurement Device

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tunable materials with high anisotropy of refractive index and low loss are of particular interest in the microwave and terahertz range. Nematic liquid crystals are highly sensitive to electric and magnetic fields and may be designed to have particularly high birefringence. In this paper we investigate birefringence and absorption losses in an isothiocyanate based liquid crystal (designed for high anisotropy) in a broad range of the electromagnetic spectrum, namely 0.1-4 GHz, 30 GHz, 0.5-1.8 THz, and in the visible and near-infrared region (400 nm-1600 nm). We report high birefringence (Δn = 0.19-0.395) and low loss in this material. This is attractive for tunable microwave and terahertz device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical efficiency of GaN-based multiple quantum well (MQW) and light emitting diode (LED) structures grown on Si(111) substrates by metal-organic vapor phase epitaxy was measured and compared with equivalent structures on sapphire. The crystalline quality of the LED structures was comprehensively characterized using x-ray diffraction, atomic force microscopy, and plan-view transmission electron microscopy. A room temperature photoluminescence (PL) internal quantum efficiency (IQE) as high as 58% has been achieved in an InGaN/GaN MQW on Si, emitting at 460 nm. This is the highest reported PL-IQE of a c-plane GaN-based MQW on Si, and the radiative efficiency of this sample compares well with similar structures grown on sapphire. Processed LED devices on Si also show good electroluminescence (EL) performance, including a forward bias voltage of ∼3.5 V at 20 mA and a light output power of 1 mW at 45 mA from a 500 ×500 μm2 planar device without the use of any additional techniques to enhance the output coupling. The extraction efficiency of the LED devices was calculated, and the EL-IQE was then estimated to have a maximum value of 33% at a current density of 4 A cm-2, dropping to 30% at a current density of 40 A cm-2 for a planar LED device on Si emitting at 455 nm. The EL-IQE was clearly observed to increase as the structural quality of the material increased for devices on both sapphire and Si substrates. © 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-electro-mechanical systems, MEMS, is a rapidly growing interdisciplinary technology within the general field of Micro-Systems Technology which deals with the design and manufacture of miniaturised machines with major dimensions at the scale of tens, to perhaps hundreds, of microns. Because they depend on the cube of a representative dimension, component masses and inertias rapidly become small as size decreases whereas surface and tribological effects, which often depend on area, become increasingly important. Although MEMS components and their areas of contact are small, tribological conditions, measured by contact pressures or acceptable wear rates, are demanding and technical and commercial success will require careful measurement and precise control of surface topography and properties. Fabrication of small numbers of MEMS devices designed to test potential material combinations can be prohibitively expensive and thus there is a need for small scale test facilities which mimic the contact conditions within a micro-machine without themselves requiring processing within a full semiconductor foundry. The talk will illustrate some initial experimental results from a small-scale experimental device which meets these requirements, examining in particular the performance of Diamond-Like-Carbon coatings on a silicon substrate. Copyright © 2005 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modular image capture system with close integration to CCD cameras has been developed. The aim is to produce a system capable of integrating CCD sensor, image capture and image processing into a single compact unit. This close integration provides a direct mapping between CCD pixels and digital image pixels. The system has been interfaced to a digital signal processor board for the development and control of image processing tasks. These have included characterization and enhancement of noisy images from an intensified camera and measurement to subpixel resolutions. A highly compact form of the image capture system is in an advanced stage of development. This consists of a single FPGA device and a single VRAM providing a two chip image capturing system capable of being integrated into a CCD camera. A miniature compact PC has been developed using a novel modular interconnection technique, providing a processing unit in a three dimensional format highly suited to integration into a CCD camera unit. Work is under way to interface the compact capture system to the PC using this interconnection technique, combining CCD sensor, image capture and image processing into a single compact unit. ©2005 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on a switchable multi-band filter response achieved within a single micro-electro-mechanical device. A prototype device fabricated in a SOI process demonstrates a voltage programmable and tunable, dual-band, band-pass/band-stop response. Both analytical and finite element models are introduced in this paper to elucidate the operating principle of the filter and to guide filter design. Voltage programmability of the filter characteristic is demonstrated with the ability to independently tune the centre frequency and bandwidth for each band. A representative measurement shows that the minimum 3 dB-bandwidth (BW) is 155 Hz, 140Hz, and 20 dB-BW is 216 Hz, 203Hz for the upper-band and lower-band center frequencies located at 131.5 kHz and 130.7 kHz, respectively. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID). It has been widely reported in the past few years how the FRFID can be used to study the exhaust and in-cylinder HC concentrations with a time resolution of a few degrees of crank angle, and the device has contributed significantly to the understanding of unburned HC emissions. Using the FRFID in the inlet manifold is difficult because of the presence of liquid droplets, and the low and fluctuating pressure levels, which leads to significant changes in the response time of the instrument. However, using recently developed procedures to correct for the errors caused by these effects, the concentration at the sampling point can be reconstructed to align the FRFID signal with actual events in the engine. © 1996 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The International Organization for Standardization (ISO) method 5136 is widely used in industry and academia to determine the sound power radiated into a duct by fans and other flow devices. The method involves placing the device at the center of a long cylindrical duct with anechoic terminations at each end to eliminate reflections. A single off-axis microphone is used on the inlet and outlet sides that can theoretically capture the plane-wave mode amplitudes but this does not provide enough information to fully account for higher-order modes. In this study, the "two-port" source model is formulated to include higher-order modes and applied for the first three modes. This requires six independent surface pressure measurements on each side or "port." The resulting experimental set-up is much shorter than the ISO rig and does not require anechoic terminations. An array of six external loudspeaker sources is used to characterize the passive part of the two-port model and the set-up provides a framework to account for transmission of higher-order modes through a fan. The relative importance of the higher-order modes has been considered and their effect on inaccuracies when using the ISO method to find source sound power has been analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the magnetisation of a 2 in. diameter YBCO thin film in the presence of traveling magnetic waves with six hall sensors. Simulation based on finite element method was conducted to reproduce the process of magnetisation. We discovered that the magnetisation of YBCO thin film based on traveling waves does not follow the constant current density assumption as used in the standing wave condition. We have shown that the traveling wave is more efficient in transporting the flux into the YBCO thin film, which suggests the potential of a flux injection device for high temperature superconducting coils. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the design and modelling of an integrated device for acoustic resonance spectroscopy (ARS). Miniaturisation of such platforms can be achieved using MEMS technology thereby enabling scaling of device dimensions to investigate smaller specimens while simultaneously operating at higher frequencies. We propose an integrated device where the transducers are mounted in close proximity with the specimen to be analysed (e.g. by integrating ultrasound transducers within a microfluidic channel). A finite element (FE) model and a simplified analytical model have been constructed to predict the acoustic response of a sample embedded in such a device configuration. A FE simulation is performed in COMSOL by embedding the piezoelectric transducers in representative fluid media. Resonant frequencies associated with the measurement can be extracted from this data. The response of various media modelled through FEA matches with analytical predictions for a range of biological media. A variety of biological media may be identified by using the measured resonant frequencies as a signature of relevant physical characteristics. The paper establishes the modelling basis of an integrated acoustic resonant spectrometer that is then applied to examine the impact of geometrical scaling on system resolution. © 2013 IEEE.