7 resultados para Mean field theory
em Cambridge University Engineering Department Publications Database
Resumo:
External, prestressed carbon fiber reinforced polymer (CFRP) straps can be used to enhance the shear strength of existing reinforced concrete beams. In order to effectively design a strengthening system, a rational predictive theory is required. The current work investigates the ability of the modified compression field theory (MCFT) to predict the behavior of rectangular strap strengthened beams where the discrete CFRP strap forces are approximated as a uniform vertical stress. An unstrengthened control beam and two strengthened beams were tested to verify the predictions. The experimental results suggest that the MCFT could predict the general response of a strengthened beam with a uniform strap spacing < 0.9d. However, whereas the strengthened beams failed in shear, the MCFT predicted flexural failures. It is proposed that a different compression softening model or the inclusion of a crack width limit is required to reflect the onset of shear failures in the strengthened beams.
Resumo:
We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.
Resumo:
Variational methods are a key component of the approximate inference and learning toolbox. These methods fill an important middle ground, retaining distributional information about uncertainty in latent variables, unlike maximum a posteriori methods (MAP), and yet generally requiring less computational time than Monte Carlo Markov Chain methods. In particular the variational Expectation Maximisation (vEM) and variational Bayes algorithms, both involving variational optimisation of a free-energy, are widely used in time-series modelling. Here, we investigate the success of vEM in simple probabilistic time-series models. First we consider the inference step of vEM, and show that a consequence of the well-known compactness property of variational inference is a failure to propagate uncertainty in time, thus limiting the usefulness of the retained distributional information. In particular, the uncertainty may appear to be smallest precisely when the approximation is poorest. Second, we consider parameter learning and analytically reveal systematic biases in the parameters found by vEM. Surprisingly, simpler variational approximations (such a mean-field) can lead to less bias than more complicated structured approximations.
Resumo:
This article investigates the role of the CoO6 octahedron distortion on the electronic properties and more particularly on the high value of the Seebeck coefficient in the BiCaCoO lamellar cobaltites. Our measurements provide clues indicating that the t2g orbital degeneracy lifting has to be considered to account for the observed high temperature limit of the thermopower. They also provide experimental arguments for locating the a1g and eg′ orbitals levels on the energy scale, through the compression of the octahedron. These results are in agreement with recent ab initio calculation including the electronic correlations and concluding for the inversion of these levels as compared to the expectation from the crystal field theory. © 2007 American Institute of Physics.