5 resultados para Matrix Function
em Cambridge University Engineering Department Publications Database
Resumo:
We report on rheological properties of a dispersion of multiwalled carbon nanotubes in a viscous polymer matrix. Particular attention is paid to the process of nanotubes mixing and dispersion, which we monitor by the rheological signature of the composite. The response of the composite as a function of the dispersion mixing time and conditions indicates that a critical mixing time t* needs to be exceeded to achieve satisfactory dispersion of aggregates, this time being a function of nanotube concentration and the mixing shear stress. At shorter times of shear mixing t< t*, we find a number of nonequilibrium features characteristic of colloidal glass and jamming of clusters. A thoroughly dispersed nanocomposite, at t> t*, has several universal rheological features; at nanotube concentration above a characteristic value nc ∼2-3 wt. % the effective elastic gel network is formed, while the low-concentration composite remains a viscous liquid. We use this rheological approach to determine the effects of aging and reaggregation. © 2006 The American Physical Society.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.
Resumo:
This work applies a variety of multilinear function factorisation techniques to extract appropriate features or attributes from high dimensional multivariate time series for classification. Recently, a great deal of work has centred around designing time series classifiers using more and more complex feature extraction and machine learning schemes. This paper argues that complex learners and domain specific feature extraction schemes of this type are not necessarily needed for time series classification, as excellent classification results can be obtained by simply applying a number of existing matrix factorisation or linear projection techniques, which are simple and computationally inexpensive. We highlight this using a geometric separability measure and classification accuracies obtained though experiments on four different high dimensional multivariate time series datasets. © 2013 IEEE.
Resumo:
Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix. © 2013 Springer-Verlag Berlin Heidelberg.