12 resultados para Marcha gait
em Cambridge University Engineering Department Publications Database
Measurement of stressful postures during daily activities: An observational study with older people.
Resumo:
This study measured the postures of older people during cooking and laundry. A sample of men and women aged 75+ years (n=27) was recruited and observed in a home-like environment. Postures were recorded with a measurement system in an objective and detailed manner. The participants were videotaped to be able to see where 'critical' postures occurred, as defined by a trunk inclination of ≥60°. Analysis of data was facilitated by specially developed software. Critical postures accounted for 3% of cooking and 10% of laundry, occurring primarily during retrieving from and putting in lower cabinets, the refrigerator, laundry basket or washing machine as well as disposing into the waste bin. These tasks involve a great variation in postural changes and pose a particular risk to older people. The results suggest that the use of stressful postures may decrease efficiency and increase fatigue, eventually leading to difficulties with daily activities. The specific tasks identified during which critical postures occurred should be targeted by designers in order to improve the activities. A few examples are given of how better design can reduce or eliminate some of the postural constraints.
Resumo:
Human locomotion is known to be influenced by observation of another person's gait. For example, athletes often synchronize their step in long distance races. However, how interaction with a virtual runner affects the gait of a real runner has not been studied. We investigated this by creating an illusion of running behind a virtual model (VM) using a treadmill and large screen virtual environment showing a video of a VM. We looked at step synchronization between the real and virtual runner and at the role of the step frequency (SF) in the real runner's perception of VM speed. We found that subjects match VM SF when asked to match VM speed with their own (Figure 1). This indicates step synchronization may be a strategy of speed matching or speed perception. Subjects chose higher speeds when VMSF was higher (though VM was 12km/h in all videos). This effect was more pronounced when the speed estimate was rated verbally while standing still. (Figure 2). This may due to correlated physical activity affecting the perception of VM speed [Jacobs et al. 2005]; or step synchronization altering the subjects' perception of self speed [Durgin et al. 2007]. Our findings indicate that third person activity in a collaborative virtual locomotive environment can have a pronounced effect on an observer's gait activity and their perceptual judgments of the activity of others: the SF of others (virtual or real) can potentially influence one's perception of self speed and lead to changes in speed and SF. A better understanding of the underlying mechanisms would support the design of more compelling virtual trainers and may be instructive for competitive athletics in the real world. © 2009 ACM.
Resumo:
We propose a constructive control design for stabilization of non-periodic trajectories of underactuated robots. An important example of such a system is an underactuated "dynamic walking" biped robot traversing rough or uneven terrain. The stabilization problem is inherently challenging due to the nonlinearity, open-loop instability, hybrid (impact) dynamics, and target motions which are not known in advance. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents "transversal" dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design, providing exponential orbital stability of the target trajectory of the original nonlinear system. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to a wide variety of hybrid nonlinear systems. © The Author(s) 2011.
Resumo:
Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking" mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain. © 2010 Springer Science+Business Media, LLC.
Resumo:
Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform by analyzing the kinematics and ground reaction force. The experimental results show that, with a proper leg design of passive dynamics and elasticity, an attractor state of human-like walking gait patterns can be achieved through extremely simple control without sensory feedback. The detailed analysis also explains how the dynamic human-like gait can contribute to adaptive biped walking. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We propose a constructive control design for stabilization of non-periodic trajectories of underactuated mechanical systems. An important example of such a system is an underactuated "dynamic walking" biped robot walking over rough terrain. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to higher degree-of-freedom robots over arbitrary terrain and other impulsive mechanical systems. © 2011 Springer-Verlag.
Resumo:
This study presents a novel approach to the design of low-cost and energy-efficient hopping robots, which makes use of free vibration of an elastic curved beam. We found that a hopping robot could benefit from an elastic curved beam in many ways such as low manufacturing cost, light body weight and small energy dissipation in mechanical interactions. A challenging problem of this design strategy, however, lies in harnessing the mechanical dynamics of free vibration in the elastic curved beam: because the free vibration is the outcome of coupled mechanical dynamics between actuation and mechanical structures, it is not trivial to systematically design mechanical structures and control architectures for stable locomotion. From this perspective, this paper investigates a case study of simple hopping robot to identify the design principles of mechanics and control. We developed a hopping robot consisting of an elastic curved beam and a small rotating mass, which was then modeled and analyzed in simulation. The experimental results show that the robot is capable of exhibiting stable hopping gait patterns by using a small actuation with no sensory feedback owing to the intrinsic stability of coupled mechanical dynamics. Furthermore, an additional analysis shows that, by exploiting free vibration of the elastic curved beam, cost of transport of the proposed hopping locomotion can be in the same rage of animals' locomotion including human running. © 2011 IEEE.
Resumo:
In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.
Resumo:
In order to understand the underlying mechanisms of animals' agility, dexterity and efficiency in motor control, there has been an increasing interest in the study of gait patterns in biological and artificial legged systems. This paper presents a novel approach to the study of gait patterns which makes use of intrinsic mechanical dynamics of robotic systems. Each of these robots consists of a U-shape elastic beam and exploits free vibration to generate different gait patterns. We developed a conceptual model for these robots, and through simulation and real-world experiments, we show three distinct mechanisms for generating four different gait patterns in these robots. © 2012 IEEE.
Resumo:
Passive dynamics plays an important role in legged locomotion of the biological systems. The use of passive dynamics provides a number of advantages in legged locomotion such as energy efficiency, self-stabilization against disturbances, and generating gait patterns and behavioral diversity. Inspired from the theoretical and experimental studies in biomechanics, this paper presents a novel bipedal locomotion model for walking and running behavior which uses compliant legs. This model consists of three-segment legs, two servomotors, and four passive joints that are constrained by eight tension springs. The self-organization of two gait patterns (walking and running) is demonstrated in simulation and in a real-world robot. The analysis of joint kinematics and ground reaction force explains how a minimalistic control architecture can exploit the particular leg design for generating different gait patterns. Moreover, it is shown how the proposed model can be extended for controlling locomotion velocity and gait patterns with the simplest control architecture. © 2007 IEEE.