147 resultados para Machines à Vecteurs de Support
em Cambridge University Engineering Department Publications Database
Resumo:
This paper describes a structured SVM framework suitable for noise-robust medium/large vocabulary speech recognition. Several theoretical and practical extensions to previous work on small vocabulary tasks are detailed. The joint feature space based on word models is extended to allow context-dependent triphone models to be used. By interpreting the structured SVM as a large margin log-linear model, illustrates that there is an implicit assumption that the prior of the discriminative parameter is a zero mean Gaussian. However, depending on the definition of likelihood feature space, a non-zero prior may be more appropriate. A general Gaussian prior is incorporated into the large margin training criterion in a form that allows the cutting plan algorithm to be directly applied. To further speed up the training process, 1-slack algorithm, caching competing hypothesis and parallelization strategies are also proposed. The performance of structured SVMs is evaluated on noise corrupted medium vocabulary speech recognition task: AURORA 4. © 2011 IEEE.
Resumo:
This paper extends the air-gap element (AGE) to enable the modeling of flat air gaps. AGE is a macroelement originally proposed by Abdel-Razek et al.for modeling annular air gaps in electrical machines. The paper presents the theory of the new macroelement and explains its implementation within a time-stepped finite-element (FE) code. It validates the solution produced by the new macroelement by comparing it with that obtained by using an FE mesh with a discretized air gap. It then applies the model to determine the open-circuit electromotive force of an axial-flux permanent-magnet machine and compares the results with measurements.