8 resultados para MULTI-RELATIONAL DATA MINING

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most research on technology roadmapping has focused on its practical applications and the development of methods to enhance its operational process. Thus, despite a demand for well-supported, systematic information, little attention has been paid to how/which information can be utilised in technology roadmapping. Therefore, this paper aims at proposing a methodology to structure technological information in order to facilitate the process. To this end, eight methods are suggested to provide useful information for technology roadmapping: summary, information extraction, clustering, mapping, navigation, linking, indicators and comparison. This research identifies the characteristics of significant data that can potentially be used in roadmapping, and presents an approach to extracting important information from such raw data through various data mining techniques including text mining, multi-dimensional scaling and K-means clustering. In addition, this paper explains how this approach can be applied in each step of roadmapping. The proposed approach is applied to develop a roadmap of radio-frequency identification (RFID) technology to illustrate the process practically. © 2013 © 2013 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared with structured data sources that are usually stored and analyzed in spreadsheets, relational databases, and single data tables, unstructured construction data sources such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our vision for data management and mining addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data mining on text-based, web-based, image-based, and network-based construction databases.

Relevância:

100.00% 100.00%

Publicador: