2 resultados para MTO
em Cambridge University Engineering Department Publications Database
Resumo:
The mismatch in thermal response between a High Pressure Compressor (HPC) drum and casing is a limiting factor in the reduction of compressor clearance. An experimental test rig has been used to demonstrate the concept of radial inflow to reduce the thermal time constant of HPC discs. The testing uses a simulated idle - Maximum Take Off (MTO) - idle transient in order to measure the thermal response directly. The testing is fully scaled in the dimensionless sense to engine conditions. A simple closure model based on lumped capacitance is used to illustrate the scope of potential benefits. The proof-of-concept testing shows that HPC disc time constant reductions of the order 2 are feasible with a radial-inflow bleed of only 4% of bore flow at scaled MTO conditions. Using the experimental results, the simple closure modelling suggests that for a stage with a significant mismatch in thermal response, reductions in 2D axis-symmetric clearance of as much as 50% at MTO conditions may be possible along with significant scope for improvements at cruise conditions. Copyright © 2013 by ASME.