315 resultados para MOS devices
em Cambridge University Engineering Department Publications Database
Resumo:
MOS gated power devices are now available for power switching applications with voltage blocking requirements up to 1 kV and current ratings up to 300A. This is due to the invention of the IGBT, a device in which MOS gate turn-on leads to minority carrier injection to modulate the high resistance drift region required for voltage blocking. The paper presents current technologies being developed in order to expand the applications of MOS gated power devices. Also explained is the available trench gate technology that can be used to fabricate power devices.
Resumo:
The authors present a review of recent developments in the detection of biomolecular interactions with field-effect devices. Ion-sensitive field-effect transistors (ISFETs) and enzyme field-effect transistors (EnFETs), based on polycrystalline silicon (poly-Si) TFTs, are discussed. Label-free electrical detection of DNA hybridization has been achieved by a new method, by using MOS capacitors or poly-Si TFTs. In principle, the method can be extended to other chemical or biochemical systems, such as proteins and cells.
Resumo:
The IGBT has become the device of choice in many high-voltage-power electronic applications, by virtue of combining the ease of MOS gate control with an acceptable forward voltage drop. However, designers have retained an interest in MOS gated thyristor structures which have a turn-off capability. These offer low on-state losses as a result of their latching behaviour. Recently, there have been various proposals for dual-gate devices that have a thyristor on-state with IGBT-like switching. Many of these dual gated structures rely on advanced MOS technology, with inherent manufacturing difficulties. The MOS and bipolar gated thyristor offers all the advantages of dual gated performance, while employing standard IGBT processing techniques. The paper describes the MBGT in detail, and presents experimental and simulation results for devices based on realistic commercial processes. It is shown that the MBGT represents a viable power semiconductor device technology, suitable for a diverse range of applications. © IEE, 1998.
Resumo:
Two-dimensional MOS device simulation programs such as MINIMOS left bracket 1 right bracket are limited in their validity due to assumptions made in defining the initial two-dimensional source/drain profiles. The two options available to define source/drain regions both construct a two-dimensional profile from one-dimensional profiles normal to the surface. Inaccuracies in forming these source/drain profiles can be expected to effect predicted device characteristics as channel dimensions of the device are reduced. This paper examines these changes by interfacing numerically similated two dimensional source/drain profiles to MINIMOS and comparing predicted I//D-V//D characteristics with 2-D interfacing, 2-D profiles constructed from interfaced 1-D profiles and MINIMOS self generated profiles. Data obtained for simulations of 3 mu m N and P channel devices are presented.
Resumo:
Silicon carbide (SiC) based MOS capacitor devices are used for gas sensing in high temperature and chemically reactive environments. A SiC MOS capacitor structure used as hydrogen sensor is defined and simulated. The effects of hydrogen concentration, temperature and interface traps on C-V characteristics were analysed. A comparison between structures with different oxide layer types (SiO2, TiO2 and ZnO) and thicknesses (50..10nm) was conducted. The TiO2 based structure has better performance than the SiO2 and ZnO structures. Also, the performance of the SiC MOS capacitor increases at thinner oxide layers. © 2012 IEEE.
Resumo:
Metallic silicides have been used as contact materials on source/drain and gate in metal-oxide semiconductor (MOS) structure for 40 years. Since the 65 nm technology node, NiSi is the preferred material for contact in microelectronic due to low resistivity, low thermal budget, and low Si consumption. Ni(Pt)Si with 10 at.% Pt is currently employed in recent technologies since Pt allows to stabilize NiSi at high temperature. The presence of Pt and the very low thickness (<10 nm) needed for the device contacts bring new concerns for actual devices. In this work, in situ techniques [X-ray diffraction (XRD), X-ray reflectivity (XRR), sheet resistance, differential scanning calorimetry (DSC)] were combined with atom probe tomography (APT) to study the formation mechanisms as well as the redistribution of dopants and alloy elements (Pt, Pd.) during the silicide formation. Phenomena like nucleation, lateral growth, interfacial reaction, diffusion, precipitation, and transient phase formation are investigated. The effect of alloy elements (Pt, Pd.) and dopants (As, B.) as well as stress and defects induced by the confinement in devices on the silicide formation mechanism and alloying element redistribution is examined. In particular APT has been performed for the three-dimensional (3D) analysis of MOSFET at the atomic scale. The advances in the understanding of the mechanisms of formation and redistribution are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.