12 resultados para MONDRAGON Corporation
em Cambridge University Engineering Department Publications Database
Resumo:
This paper presents the initial results of on-going research in the field of external Corporate Venture Capital (CVC) investments, i.e. equity investments of large corporations in entrepreneurial ventures which originated outside the corporation. The research is motivated by the fact that external CVC plays an increasingly important role within the strategy of corporations. Driven by a general trend towards a more open approach to innovation, companies see particular value in external corporate venturing as a tool to gain, for example, access to complementary technologies and a general window on technology developments. The review of literature in the field of external corporate venturing clearly reveals that theoretical gaps exist in understanding mechanisms for capturing value and measurements of this value. To help close these gaps, the research addresses the underlying question "How do corporations and start-ups capture and measure strategic value through external CVC investments" by using embedded, multiple case studies. Following an initial set of case studies, steps towards the development of a framework for capturing and measuring strategic value from CVC investments are outlined within this paper and the resulting preliminary framework is presented. The paper closes with an outlook on ongoing and future research steps. © 2009 PICMET.
Resumo:
The propagation losses in the fundamental mode of a bicone made of highly reflecting metal or a dielectric of large refraction were approximately estimated using Leontovich's boundary condition. A 400-fold concentration of the energy flux density lias been obtained in a cross section which is much smaller than λ. Here, the losses are 2.5% at λ = 550 nm in an Ag bicone and 12% in a semiconductor bicone with a band gap of ≈1 eV for hv larger than the band gap. The excitation efficiency of a bicone has been estimated. While not too large, it can be increased significantly using the method proposed in the present paper. The application of the optical bicone for the multiplication of a semiconductor-laser frequency is discussed. The results obtained are also of use in scanning near-field optical microscopy and in experiments on focusing laser pulses of ultrahigh power. © 2000 Plenum/Kluwer Publishing Corporation.