16 resultados para MODEL COMPOSITES
em Cambridge University Engineering Department Publications Database
Resumo:
The composite nature of mineralized natural materials is achieved through both the microstructural inclusion of an organic component and an overall microstructure that is controlled by templating onto organic macromolecules. A modification of an existing laboratory technique is developed for the codeposition of a CaCO3-gelatin composite with a controllable organic content. First, calibration curves are developed to determine the organic content of a CaCO3-gelatin composite from infrared spectra. Second, a CaCO3-gelatin composite is deposited on either glass coverslips or demineralized eggshell membranes using an automated alternating soaking process. Electron microscopy images and use of the infrared spectra calibration curves show that by altering the amount of gelatin in the ionic growth solutions, the final organic component of the mineral can be regulated over the range of 1-10%, similar to that of natural eggshell. © 2012 Materials Research Societ.
Resumo:
In order to account for interfacial friction of composite materials, an analytical model based on contact geometry and local friction is proposed. A contact area includes several types of microcontacts depending on reinforcement materials and their shape. A proportion between these areas is defined by in-plane contact geometry. The model applied to a fibre-reinforced composite results in the dependence of friction on surface fibre fraction and local friction coefficients. To validate this analytical model, an experimental study on carbon fibrereinforced epoxy composites under low normal pressure was performed. The effects of fibre volume fraction and fibre orientation were studied, discussed and compared with analytical model results. © Springer Science+Business Media, LLC 2012.
Resumo:
An experimental study of local orientations around whiskers in deformed metal matrix composites has been used to determine the strain gradients existing in the material following tensile deformation. These strain fields have been represented as arrays of geometrically necessary dislocations, and the material flow stress predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured flow stress is reasonable, the experimentally determined strain gradients are lower by a factor of 5-10 than values obtained in previous estimates made using continuum plasticity finite element models. The local orientations around the whiskers contain a large amount of detailed information about the strain patterns in the material, and a novel approach is made to representing some of this information and to correlating it with microstructural observations. © 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.
Resumo:
A theoretical study is given of viscoelastic microbuckling of fiber composites. The analysis is formulated in terms of general linear viscoelastic behavior within the kink band. Material outside the kink band is assumed to behave elastically. Two specific forms of linear viscoelastic behavior are considered: a standard linear viscoelastic model and a logarithmically creeping model. Results are provided as deformation versus time histories and failure life versus applied stress. Failure is due to either the attainment of a critical failure strain in the kink band or to the intervention of a different failure mechanism such as plastic microbuckling.
Resumo:
A new theoretical model that predicts the magnetostriction of multilayered composites has been developed. The model takes into account the shear stress between the composite layers and consequently predicts a non-uniform strain along their thickness. The model has been experimentally validated by producing composites formed from three materials with different magnetostrains and mechanical properties, and controlled layer thicknesses in the order of micrometers. Deformations of several ppm, up to 7.5% of the saturation magnetostrain were measured between the edge and the centre of such composites. © 2006 Elsevier B.V. All rights reserved.