2 resultados para MISORIENTATION
em Cambridge University Engineering Department Publications Database
Resumo:
Single grain REBa2C3uO7 ((RE)BCO, where RE is a rare earth element or yttrium) bulk superconducting materials have significant potential for a variety of engineering applications due to their ability to trap high magnetic fields. However, it is well known that the presence of grain boundaries coupled with a high angle of misorientation (typically 5�) significantly reduces the critical current density, J c , in all forms of high temperature superconducting materials. It is of considerable fundamental and technological interest, therefore, to investigate the grain boundary properties of bulk, film and tape (RE)BCO. We report a successful multi-seeding technique for the fabrication of fully aligned, artificial (0��misalignment) grain boundaries within large grain YBCO bulk superconductors using bridge-shaped seeds. The microstructure and critical current densities of the grain boundaries produced by this technique have been studied in detail.
Resumo:
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.