82 resultados para MG-GD ALLOYS

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd-Ba-Cu-O (GdBCO) single grains have been previously melt-processed successfully in air using a generic Mg-Nd-Ba-Cu-O (Mg-NdBCO) seed crystal. Previous research has revealed that the addition of a small amount of BaO 2 to the precursor powders prior to melt processing can suppress the formation of Gd/Ba solid solution, and lead to a significant improvement in superconducting properties of the single grains. Research into the effects of a higher Ba content on single grain growth, however, has been limited by the relatively small grain size in the earlier studies. This has been addressed by developing Ba-rich precursor compounds Gd-163 and Gd-143, fabricated specifically to enable the presence of greater concentrations of Ba during the melt process. In this study, we propose a new processing route for the fabrication of high performance GdBCO single grain bulk superconductors in air by enriching the precursor powder with these new Ba rich compounds. The influence of the addition of the new compounds on the microstructures and superconducting properties of GdBCO single grains is reported. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on a-C1-xSix:H alloys deposited by RF plasma enhanced chemical vapour deposition (PECVD). This method gives alloys with considerable hydrogen content and only moderate hardness. Here, we use a high plasma density source, the electron cyclotron wave resonance (ECWR) source, to prepare films with a high deposition rate. The composition and bonding in the alloys is determined by XPS, visible and UV Raman and FTIR spectroscopy. We find that it is possible to produce hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap over 2 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra. © 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple process models are applied to predict microstructural changes due to the thermal cycle imposed in friction stir welding. A softening model developed for heat-treatable aluminium alloys of the 6000 series is applied to the aerospace alloy 2014 in the peak-aged (T6) condition. It is found that the model is not readily applicable to alloy 2024 in the naturally aged (T3) temper, but the softening behaviour can still be described semi-empirically. Both analytical and numerical (finite element) thermal models are used to predict the thermal histories in trial welds. These are coupled to the microstructural model to investigate: (a) the hardness profile across the welded plate; (b) alloy softening ahead of the approaching welding tool. By incorporating the softening model applied to 6082-T6 alloy, the hardness profile of friction stir welds in dissimilar alloys is also predicted. © AFM, EDP Sciences 2005.