20 resultados para METAL-ORGANIC FRAMEWORK
em Cambridge University Engineering Department Publications Database
Resumo:
We have investigated single grain boundaries (GBs) isolated in coated conductors produced by Metal-Organic Deposition (MOD). When a magnetic field is swept in the film plane, an angle-dependent crossover from boundary to grain limited critical current density Jc is found. In the force-free orientation, even at fields as high as 8 T, the GBs still limit Jc. We deduce that this effect is a direct consequence of GB meandering. We have employed these single GB results to explain the dependence of Jc of polycrystalline tracks on their width: in-plane measurements become flatter as the tracks are narrowed down. This result is consistent with the stronger GB limitation at field configurations close to force-free found from the isolated boundaries. Our study shows that for certain geometries even at high fields the effect of GBs cannot be neglected.
Resumo:
We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The optical efficiency of GaN-based multiple quantum well (MQW) and light emitting diode (LED) structures grown on Si(111) substrates by metal-organic vapor phase epitaxy was measured and compared with equivalent structures on sapphire. The crystalline quality of the LED structures was comprehensively characterized using x-ray diffraction, atomic force microscopy, and plan-view transmission electron microscopy. A room temperature photoluminescence (PL) internal quantum efficiency (IQE) as high as 58% has been achieved in an InGaN/GaN MQW on Si, emitting at 460 nm. This is the highest reported PL-IQE of a c-plane GaN-based MQW on Si, and the radiative efficiency of this sample compares well with similar structures grown on sapphire. Processed LED devices on Si also show good electroluminescence (EL) performance, including a forward bias voltage of ∼3.5 V at 20 mA and a light output power of 1 mW at 45 mA from a 500 ×500 μm2 planar device without the use of any additional techniques to enhance the output coupling. The extraction efficiency of the LED devices was calculated, and the EL-IQE was then estimated to have a maximum value of 33% at a current density of 4 A cm-2, dropping to 30% at a current density of 40 A cm-2 for a planar LED device on Si emitting at 455 nm. The EL-IQE was clearly observed to increase as the structural quality of the material increased for devices on both sapphire and Si substrates. © 2011 American Institute of Physics.
Resumo:
The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca. (C) 2005 American Institute of Physics.
Resumo:
A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.
Resumo:
Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.
Resumo:
We report straight and vertically aligned defect-free GaAs nanowires grown on Si(111) substrates by metal-organic chemical vapor deposition. By deposition of thin GaAs buffer layers on Si substrates, these nanowires could be grown on the buffer layers with much less stringent conditions as otherwise imposed by epitaxy of III-V compounds on Si. Also, crystal-defect-free GaAs nanowires were grown by using either a two-temperature growth mode consisting of a short initial nucleation step under higher temperature followed by subsequent growth under lower temperature or a rapid growth rate mode with high source flow rate. These two growth modes not only eliminated planar crystallographic defects but also significantly reduced tapering. Core-shell GaAs-AlGaAs nanowires grown by the two-temperature growth mode showed improved optical properties with strong photoluminescence and long carrier life times. © 2011 American Chemical Society.
Resumo:
GaAs was radially deposited on InAs nanowires by metal-organic chemical vapor deposition and resultant nanowire heterostructures were characterized by detailed electron microscopy investigations. The GaAs shells have been grown in wurtzite structure, epitaxially on the wurtzite structured InAs nanowire cores. The fundamental reason of structural evolution in terms of material nucleation and interfacial structure is given.
Resumo:
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.
Resumo:
We investigate vertical and defect-free growth of GaAs nanowires on Si (111) substrates via a vapor-liquid-solid (VLS) growth mechanism with Au catalysts by metal-organic chemical vapor deposition (MOCVD). By using annealed thin GaAs buffer layers on the surface of Si substrates, most nanowires are grown on the substrates straight, following (111) direction; by using two temperature growth, the nanowires were grown free from structural defects, such as twin defects and stacking faults. Systematic experiments about buffer layers indicate that V/III ratio of precursor and growth temperature can affect the morphology and quality of the buffer layers. Especially, heterostructural buffer layers grown with different V/III ratios and temperatures and in-situ post-annealing step are very helpful to grow well arranged, vertical GaAs nanowires on Si substrates. The initial nanowires having some structural defects can be defect-free by two-temperature growth mode with improved optical property, which shows us positive possibility for optoelectronic device application. ©2010 IEEE.
Resumo:
The effects of growth temperature and V/III ratio on the morphology and crystallographic phases of InP nanowires that are grown by metal organic chemical vapour deposition have been studied. We show that higher growth temperatures or higher V/III ratios promote the formation of wurtzite nanowires while zinc-blende nanowires are favourableat lower growth temperatures and lower V/III ratios. A schematic map of distribution of zinc-blende and wurtzite structures has been developed in the range of growth temperatures (400-510 °C) and V/III ratios (44 to 700) investigated in this study. © 2010 IOP Publishing Ltd.
Resumo:
The optical and structural properties of binary and ternary III-V nanowires including GaAs, InP, In(Ga)As, Al(Ga)As, and GaAs(Sb) nanowires by metal-organic chemical vapour deposition are investigated, Au colloidal nanoparticles are employed to catalyze nanowire growth. Zinc blende or wurtzite crystal structures with some stacking faults are observed for these nanowires by high resolution transmission electron microscope. In addition, the properties of heterostructure nanowires including GaAs-AlGaAs core-shell nanowires, GaAs-InAs nanowires, and GaAs-GaSb nanowires are reported. Single nanowire luminescence properties from optically bright InP nanowires are reported. Interesting phenomena such as two-temperature procedure, nanowire height enhancement of isolated ternary InGaAs nanowires, kinking effect of InAs-GaAs heterostructure nanowires, and unusual growth property of GaAs-GaSb heterostructure nanowires are investigated. These nanowires will play an essential role in future optoelectronic devices.
Resumo:
InGaAs quantum dots (QDs) and nanowires have been grown on GaAs by metal-organic chemical vapour deposition on GaAs (100) and (111)B substrates, respectively. InGaAs QD lasers were fabricated and characterised. Results show ground-state lasing at about 1150 nm in devices with lengths greater than 2.5 mm. We also observed a strong influence of nanowire density on nanowire height specific to nanowires with high indium composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Selective area epitaxy for applications in quantum-dot optoelectronic device integration is also discussed in this paper. ©2006 IEEE.
Resumo:
We review our results on integrated photonic devices fabricated using InGaAs quantum-dots. Selective-area metal organic chemical vapor deposition (MOCVD) is used to grow the active region with quantum dots emitting at different wavelengths for fabrication of the integrated devices. We will also review the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures grown by MOCVD. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with several alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices.