8 resultados para MESOPOROUS SNO2
em Cambridge University Engineering Department Publications Database
Smart chemical sensor application of ZnO nanowires grown on CMOS compatible SOI microheater platform
Resumo:
Smart chemical sensor based on CMOS(complementary metal-oxide- semiconductor) compatible SOI(silicon on insulator) microheater platform was realized by facilitating ZnO nanowires growth on the small membrane at the relatively low temperature. Our SOI microheater platform can be operated at the very low power consumption with novel metal oxide sensing materials, like ZnO or SnO2 nanostructured materials which demand relatively high sensing temperature. In addition, our sol-gel growth method of ZnO nanowires on the SOI membrane was found to be very effective compared with ink-jetting or CVD growth techniques. These combined techniques give us the possibility of smart chemical sensor technology easily merged into the conventional semiconductor IC application. The physical properties of ZnO nanowire network grown by the solution-based method and its chemical sensing property also were reported in this paper.
Resumo:
We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.
Resumo:
There is considerable demand for sensors that are capable of detecting ultra-low concentrations (sub-PPM) of toxic gases in air. Of particular interest are NO2 and CO that are exhaust products of internal combustion engines. Electrochemical (EC) sensors are widely used to detect these gases and offer the advantages of low power, good selectivity and temporal stability. However, EC sensors are large (1 cm3), hand-made and thus expensive ($25). Consequently, they are unsuitable for the low-cost automotive market that demands units for less than $10. One alternative technology is SnO2 or WO3 resistive gas sensors that are fabricated in volume today using screen-printed films on alumina substrates and operate at 400°C. Unfortunately, they suffer from several disadvantages: power consumption is high 200 mW; reproducibility of the sensing element is poor; and cross-sensitivity is high. © 2013 IEEE.
Resumo:
Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO 2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2′,7,7′-tetrakis(N,N-di-p- methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.