25 resultados para MASS ANALYZED LON KINETIC ENERGY SPECTROMETRY(MIKES)
em Cambridge University Engineering Department Publications Database
Resumo:
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants. © 2010 Springer Science+Business Media B.V.
Resumo:
It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.
Resumo:
The use of free vibration in elastic structure can lead to energy-efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, the goals of this paper are to propose a design strategy of hopping robot based on elastic curved beams and actuated rotating masses and to identify the minimalistic model that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three 1-D models are examined that contain different configurations of simple spring-damper-mass components. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the self-stability of hopping motion under disturbances is investigated, and design and control parameters are analyzed for the energy-efficient hopping. In addition, further analyses show that this robot can achieve the energy-efficient hopping with the variation in payload, and the source of energy dissipation of the robot hopping is investigated. © 1982-2012 IEEE.
Resumo:
The use of free vibration in elastic structure can lead to energy efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, this paper explores three minimalistic models of free vibration that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three one-dimensional models are examined that contain different configurations of simple spring-damper-mass components. The self-stability of these models are also investigated in simulation. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the control parameters are analyzed for the energy efficient hopping. © 2013 IEEE.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss". This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2010 by ASME.
Resumo:
There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction, the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss." This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2014 by ASME.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2010 by Sang Lee.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2011 Elsevier Ltd.
The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage
Resumo:
This paper presents two-dimensional LDA measurements of the convection of a wake through a low-pressure (LP) turbine cascade. Previous studies have shown the wake convection to be kinematic but have not provided details of the turbulent field. The spatial resolution of these measurements has facilitated the calculation of the production of turbulent kinetic energy and this has revealed a mechanism for turbulence production as the wake converts through the bladerow. The measured ensemble-averaged velocity field confirmed the previously reported kinematics of wake convection while the measurements of the turbulence quantities showed the wake fluid to be characterised by elevated levels of turbulent kinetic energy (TKE) and to have an anisotropic structure. Based on the measured mean and turbulence quantities, the production of turbulent kinetic energy was calculated. This highlighted a TKE production mechanism that resulted in increased levels of turbulence over the rear suction surface where boundary layer transition occurs. The turbulence production mechanism within the bladerow was also observed to produce more nearly isotropic turbulence. Production occurs when the principal stresses within the wake are aligned with the mean strains. This coincides with the maximum distortion of the wake within the blade passage and provides a mechanism for the production of turbulence outside of the boundary layer.
Resumo:
Detached-eddy simulation of transonic flow past a thin section of a fan blade has been carried out. The inflow Mach number is 1.03, and a bow shock forms upstream of the blade. The shock (corresponding to an adjacent blade) impinges on the suction-side boundary layer which causes separation and rapid transition to turbulence. The boundary layer later re-attaches near the trailing edge. The pressure-side boundary layer transitions near the leading edge and remains attached. Mean surface pressure shows basic agreement with a steady RANS calculation; strong shock motion in the DES is the major cause of discrepancy. Surface pressure spectra are investigated, and low-frequency two-dimensional disturbances associated with the shock motion are dominant. Removing the two-dimensional component from the spectra, the pressure-side three-dimensional spectra reproduce the spectral shape given by a correlation for flat-plate boundary layer wall-pressure spectra developed by Goody. 1 The suction-side disturbances produce similar high- and intermediate-frequency scalings despite substantially different boundary layer development. Near-wake results show that disturbance kinetic energy peaks at the suction-side inflection point of the mean profile, and that the energy is concentrated at low frequencies relative to the near-trailing edge surface pressure. Copyright © 2009 by the authors.
Resumo:
An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.
2D PIV measurements in the near field of grid turbulence using stitched fields from multiple cameras
Resumo:
We present measurements of grid turbulence using 2D particle image velocimetry taken immediately downstream from the grid at a Reynolds number of Re M = 16500 where M is the rod spacing. A long field of view of 14M x 4M in the down- and cross-stream directions was achieved by stitching multiple cameras together. Two uniform biplanar grids were selected to have the same M and pressure drop but different rod diameter D and crosssection. A large data set (10 4 vector fields) was obtained to ensure good convergence of second-order statistics. Estimations of the dissipation rate ε of turbulent kinetic energy (TKE) were found to be sensitive to the number of meansquared velocity gradient terms included and not whether the turbulence was assumed to adhere to isotropy or axisymmetry. The resolution dependency of different turbulence statistics was assessed with a procedure that does not rely on the dissipation scale η. The streamwise evolution of the TKE components and ε was found to collapse across grids when the rod diameter was included in the normalisation. We argue that this should be the case between all regular grids when the other relevant dimensionless quantities are matched and the flow has become homogeneous across the stream. Two-point space correlation functions at x/M = 1 show evidence of complex wake interactions which exhibit a strong Reynolds number dependence. However, these changes in initial conditions disappear indicating rapid cross-stream homogenisation. On the other hand, isotropy was, as expected, not found to be established by x/M = 12 for any case studied. © Springer-Verlag 2012.