15 resultados para MAGNETORESISTANCE

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of magnetoresistive La 0.7Ca 0.3MnO 3 (LCMO) with insulating Mn 3O 4 are useful as a model system because no foreign cation is introduced in the LCMO phase by interdiffusion during the heat treatment. Here we report the magnetotransport properties as a function of sintering temperature T sinter for a fixed LCMO/Mn 3O 4 ratio. Decreasing T sinter from 1250 °C to 800 °C causes an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size (CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data for the LCMO/Mn 3O 4 composites sintered between 800 °C and 1250 °C follow the same trend line as data from the literature for pure LCMO samples with crystallite size >∼25 nm. This differs from the LFMR enhancement observed by many authors in the usual manganite composites, i.e., composites where the insulating phase contains cations other than La, Ca or Mn. This difference suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for the enhanced LFMR. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium-substituted lanthanum manganite compounds were synthesized by the spray drying technique. This method - whose main advantages are versatility, high reproducibility and scalability - yields small grain materials of high homogeneity and displaying low-field magnetoresistance effects. We report about the physical and chemical characterizations of these samples in order to investigate the potential interest of spray drying for the production of materials for low-field magnetoresistance applications. We have studied the dependence of the low-field magnetoresistance on the temperature and duration of the thermal treatment applied to the pelletized powders. The issue of the shape anisotropy (demagnetisation effects) influence on the magnetoresistance properties has also been dealt with. © 2005 Springer Science + Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the magnetization reversal process of a single chain of identical nanomagnetic dots fabricated from 30 nm thick Ni 80Fe20. The structures consist of two 5 μm wide support wires bridged with a single chain of identical dots of diameter δ in the range 100-250 nm. For fields applied perpendicular to the single chain, we observed an unusual size dependent hysteretic behavior in the magnetoresistance curve at high field. This is due to the magnetostatic interaction arising from the proximity of the magnetic charges. We are able to deduce from a simple micromagnetic simulation that the reversal process in the chain of dots with δ=100nm is mediated by a collective process of nearly coherent spin rotation. The magnetotransport measurements along the chain reveal a complex magnetization reversal process in the chain of nanomagnets. © 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behavior of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, rho downward arrow/rho upward arrow approximately 5.5, in good agreement with thin film band structure calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetocaloric and transport properties are reported for novel poly- and nanocrystalline double composite manganites, La 0.8Sr 0.2MnO 3/La 0.7Ca 0.3MnO 3, prepared by the sol-gel method. Magnetic field dependence of magnetic entropy change is found to be stronger for the nano- than the polycrystalline composite. The remarkable broadening of the temperature interval, where the magnetocaloric effect occurs in poly- and nanocrystalline composites, causes the relative cooling power (RCP(S)) of the nanocrystalline composite to be reduced by only 10 compared to the Sr based polycrystalline phase. The RCP(S) of the polycrystalline composite becomes remarkably enhanced. The low temperature magnetoresistance is enhanced by 5 for the nanostructured composite. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of polycationic compounds by the spray-drying technique is an interesting alternative in the domain of aqueous precursor synthesis methods. Spray drying yields high quality samples with good reproducibility. The possibility of scaling up for production of large quantities with fast processing time is well established by the commercial availability of powders of various compositions. In this paper, we have discussed the advantages and limitations of this method and demonstrated its interest by synthesizing a few polycationic compounds selected for their attractive properties of thermoelectricity [Bi1.68Ca2Co1.69O 8, La0.95A0.05CoO3 (A=Ca, Sr, Ba)] or magnetoresistance [La0.70A0.30MnO3 (A=Sr, Ba)]. We have confirmed the quality of these samples by reporting their structure, magnetic and transport properties. © 2010 Elsevier Ltd All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical properties of polycrystalline La0.5Ba 0.5MnO3 are reported from low temperature (10 K) up to above room temperature. An aim has been to obtain microscopic parameters and to search for the characteristic lengths in terms of which one can discuss the interplay between magnetic, electric, and phonon excitations. The structural and magnetotransport measurements reveal a set of relatively high transition temperatures (near 300 K) between ferromagnetic/metallic and paramagnetic/semiconducting phases. It is found, in particular, that the so-called localization length increases from 0.085 to 0.24 nm when the magnetic field varies from 0 to 8 T. Moreover a "special field value" ∼0.03 T is observed in the description of the electrical resistance. It cannot be presently distinguished whether it is the signature of a spin reorientation transition in the canted phase or a mere saturation field for aligning magnetic domains. The relatively high magnetoresistance effect (≃55% at 8 T and 10 K) makes the La0.5Ba0.5MnO3 a very interesting material for among others sensor applications. © 2009 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La0.7Ca0.3MnO3/Mn3O4 composites can be synthesized in one step by thermal treatment of a spray-dried precursor, instead of mixing pre-synthesized powders. Another advantage of this composite system is that a long sintering step can be used without leading to significant modification of the manganite composition. The percolation threshold is reached at ∼20 vol% of manganite phase. The 77 K low field magnetoresistance is enhanced to ∼11% at 0.15 T when the composition is close to the percolation threshold. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic, electrical and thermal transport properties of the perovskite La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the "double-bump" feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T) are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system. © 2005 Chinese Physical Society and IOP Publishing Ltd.