56 resultados para MAGNETIZATION

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As we known, the high temperature (77 K) superconducting (HTS) motor is considered as a competitive electrical machine by more and more people. There have been various of designs for HTS motor in the world. However, most of them focus on HTS tapes rather than bulks. Therefore, in order to investigate possibility of HTS bulks on motor application, a HTS magnet synchronous motor which has 75 pieces of YBCO bulks surface mounted on the rotor has been designed and developed in Cambridge University. After pulsed field magnetization (PFM) process, the rotor can trap a 4 poles magnetic field of 375 mT. The magnetized rotor can provide a maximum torque of 49.5 Nm and a maximum power of 7.8 kW at 1500 rpm. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the magnetization reversal process of a single chain of identical nanomagnetic dots fabricated from 30 nm thick Ni 80Fe20. The structures consist of two 5 μm wide support wires bridged with a single chain of identical dots of diameter δ in the range 100-250 nm. For fields applied perpendicular to the single chain, we observed an unusual size dependent hysteretic behavior in the magnetoresistance curve at high field. This is due to the magnetostatic interaction arising from the proximity of the magnetic charges. We are able to deduce from a simple micromagnetic simulation that the reversal process in the chain of dots with δ=100nm is mediated by a collective process of nearly coherent spin rotation. The magnetotransport measurements along the chain reveal a complex magnetization reversal process in the chain of nanomagnets. © 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation studies were conducted on the magnetization of (RE)BCO (RE-Ba-Cu-O, where RE represents a rare earth element) bulk superconductors using various split-coil arrangements by solving the critical state equation using the commercial software FlexPDE. A pair of coaxial coils of identical size is identified as an optimum arrangement for practical magnetization at 77K by the zero-field cooling technique. In general, the magnetization process is likely to be most effective when the outer radius of the coils lies between 100% and 50% of the sample radius. A relatively large coil pair is necessary for samples with either a smaller aspect ratio or larger values of J c0. Two different regimes of flux penetration are found to be involved in the magnetization process. For a sufficiently small sample, the penetration field is determined by flux propagation from beneath the coil to the centre of the sample; for a sufficiently large sample, the definitive propagation route is from beneath the coil to the periphery of the sample. Effective split-coil magnetization occurs only in the former regime, and both penetration regimes are completely different from that involved in the solenoidal-coil magnetization process. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present temperature-dependent modeling of high-temperature superconductors (HTS) to understand HTS electromagnetic phenomena where temperature fluctuation plays a nontrivial role. Thermal physics is introduced into the well-developed H-formulation model, and the effect of temperature-dependent parameters is considered. Based on the model, we perform extensive studies on two important HTS applications: quench propagation and pulse magnetization. A micrometer-scale quench model of HTS coil is developed, which can be used to estimate minimum quench energy and normal zone propagation velocity inside the coil. In addition, we study the influence of inhomogeneity of HTS bulk during pulse magnetization. We demonstrate how the inhomogeneous distribution of critical current inside the bulk results in varying degrees of heat dissipation and uniformity of final trapped field. The temperature- dependent model is proven to be a powerful tool to study the thermally coupled electromagnetic phenomena of HTS. © 2012 American Institute of Physics.