7 resultados para Lymphoma, Large-Cell, Diffuse

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Nanoelectromechanical (NEM) device developed for dynamic random access memory (DRAM) is reported. A vertical nanotube structure is employed to form the electromechanical switch and capacitor structure. The mechanical movement of the nanotube defines 'On' and 'OFF' states and the electrical signals which result lead to charge storage in a vertical capacitor structure as in a traditional DRAM. The vertical structure contributes greatly to a decrease in cell dimension. The main concept of the NEM switch and capacitor can be applied to other memory devices as well. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell-cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell-cell junctions abolishes directed collective migration and passive cell-cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell-cell junctions can feed back to regulate the organization of migrating tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computations are made for chevron and coflowing jet nozzles. The latter has a bypass ratio of 6:1. Also, unlike the chevron nozzle, the core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large-eddy resolving approach is used with circa 12 × 10 6 cell meshes. Because the codes being used tend toward being dissipative the subgrid scale model is abandoned, giving what can be termed numerical large-eddy simulation. To overcome near-wall modeling problems a hybrid numerical large-eddy simulation-Reynolds-averaged Navier-Stokes related method is used. For y + ≤ 60 a Reynolds-averaged Navier-Stokes model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi equation, an extension of the eikonal equation. For both nozzles, results show encouraging agreement with measurements of other workers. The eikonal equation is also used for ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. © 2011 by Cambridge University.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computations are made of a short cowl coflowing jet nozzle with a bypass ratio 8 : 1. The core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large eddy resolving approach is used with a 12 × 106 cell mesh. Since the code being used tends towards being dissipative the sub-grid scale (SGS) model is abandoned giving what can be termed Numerical Large Eddy Simulation (NLES). To overcome near wall modelling problems a hybrid NLES-RANS (Reynolds Averaged Navier-Stokes) related method is used. For y+ ≤ 60 a κ-l model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi (HJ) equation, an extension of the eikonal equation. Results show encouraging agreement with existing measurements of other workers. The eikonal equation is also used for acoustic ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements and predictions are made of a short-cowl coflowing jet with a bypass ratio of 8:1. The Reynolds number is 300,000, and the inlet Mach numbers are representative of aeroengine conditions. The low Reynolds number of the measurements makes the case well suited to the assessment of large-eddy-simulation-related strategies. The nozzle concentricity is carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both laser Doppler anemometry and particle image velocimetry. The simulations are completed on 6× 106, 12× 106, and 50 × 106 cell meshes. To overcome near-wall modeling problems, a hybrid large-eddy-simulation-Reynolds-averaged-Navier-Stokesrelated method is used. The near-wall Reynolds-averaged-Navier-Stokes layer is helpful in preventing nonphysical separation from the nozzle wall.Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collective behavior refers to the emergence of complex migration patterns over scales larger than those of the individual elements constituting a system. It plays a pivotal role in biological systems in regulating various processes such as gastrulation, morphogenesis and tissue organization. Here, by combining experimental approaches and numerical modeling, we explore the role of cell density ('crowding'), strength of intercellular adhesion ('cohesion') and boundary conditions imposed by extracellular matrix (ECM) proteins ('constraints') in regulating the emergence of collective behavior within epithelial cell sheets. Our results show that the geometrical confinement of cells into well-defined circles induces a persistent, coordinated and synchronized rotation of cells that depends on cell density. The speed of such rotating large-scale movements slows down as the density increases. Furthermore, such collective rotation behavior depends on the size of the micropatterned circles: we observe a rotating motion of the overall cell population in the same direction for sizes of up to 200 μm. The rotating cells move as a solid body, with a uniform angular velocity. Interestingly, this upper limit leads to length scales that are similar to the natural correlation length observed for unconfined epithelial cell sheets. This behavior is strongly altered in cells that present a downregulation of adherens junctions and in cancerous cell types. We anticipate that our system provides a simple and easy approach to investigate collective cell behavior in a well-controlled and systematic manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation. © 2013 Springer-Verlag Berlin Heidelberg.