18 resultados para Low resolution brain tomography (LORETA)
em Cambridge University Engineering Department Publications Database
Resumo:
A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 106 is achieved. © 2005 American Institute of Physics.
Resumo:
In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. In particular there are three areas of novelty: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation, learnt offline, to generalize in the presence of extreme illumination changes; (ii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve invariance to unseen head poses; and (iii) we introduce an accurate video sequence "reillumination" algorithm to achieve robustness to face motion patterns in video. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our system consistently demonstrated a nearly perfect recognition rate (over 99.7%), significantly outperforming state-of-the-art commercial software and methods from the literature. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
We present a multispectral photometric stereo method for capturing geometry of deforming surfaces. A novel photometric calibration technique allows calibration of scenes containing multiple piecewise constant chromaticities. This method estimates per-pixel photometric properties, then uses a RANSAC-based approach to estimate the dominant chromaticities in the scene. A likelihood term is developed linking surface normal, image intensity and photometric properties, which allows estimating the number of chromaticities present in a scene to be framed as a model estimation problem. The Bayesian Information Criterion is applied to automatically estimate the number of chromaticities present during calibration. A two-camera stereo system provides low resolution geometry, allowing the likelihood term to be used in segmenting new images into regions of constant chromaticity. This segmentation is carried out in a Markov Random Field framework and allows the correct photometric properties to be used at each pixel to estimate a dense normal map. Results are shown on several challenging real-world sequences, demonstrating state-of-the-art results using only two cameras and three light sources. Quantitative evaluation is provided against synthetic ground truth data. © 2011 IEEE.
Resumo:
In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. The central contribution is an illumination invariant, which we show to be suitable for recognition from video of loosely constrained head motion. In particular there are three contributions: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation to exploit the proposed invariant and generalize in the presence of extreme illumination changes; (ii) we introduce a video sequence re-illumination algorithm to achieve fine alignment of two video sequences; and (iii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve robustness to unseen head poses. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 323 individuals and 1474 video sequences with extreme illumination, pose and head motion variation. Our system consistently achieved a nearly perfect recognition rate (over 99.7% on all four databases). © 2012 Elsevier Ltd All rights reserved.
Resumo:
Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results. © 2014 SPIE.
Resumo:
Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120°C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO2 and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement. © 2010 IOP Publishing Ltd.
The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage
Resumo:
This paper presents two-dimensional LDA measurements of the convection of a wake through a low-pressure (LP) turbine cascade. Previous studies have shown the wake convection to be kinematic but have not provided details of the turbulent field. The spatial resolution of these measurements has facilitated the calculation of the production of turbulent kinetic energy and this has revealed a mechanism for turbulence production as the wake converts through the bladerow. The measured ensemble-averaged velocity field confirmed the previously reported kinematics of wake convection while the measurements of the turbulence quantities showed the wake fluid to be characterised by elevated levels of turbulent kinetic energy (TKE) and to have an anisotropic structure. Based on the measured mean and turbulence quantities, the production of turbulent kinetic energy was calculated. This highlighted a TKE production mechanism that resulted in increased levels of turbulence over the rear suction surface where boundary layer transition occurs. The turbulence production mechanism within the bladerow was also observed to produce more nearly isotropic turbulence. Production occurs when the principal stresses within the wake are aligned with the mean strains. This coincides with the maximum distortion of the wake within the blade passage and provides a mechanism for the production of turbulence outside of the boundary layer.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.
Resumo:
Acoustic communication in drosophilid flies is based on the production and perception of courtship songs, which facilitate mating. Despite decades of research on courtship songs and behavior in Drosophila, central auditory responses have remained uncharacterized. In this study, we report on intracellular recordings from central neurons that innervate the Drosophila antennal mechanosensory and motor center (AMMC), the first relay for auditory information in the fly brain. These neurons produce graded-potential (nonspiking) responses to sound; we compare recordings from AMMC neurons to extracellular recordings of the receptor neuron population [Johnston's organ neurons (JONs)]. We discover that, while steady-state response profiles for tonal and broadband stimuli are significantly transformed between the JON population in the antenna and AMMC neurons in the brain, transient responses to pulses present in natural stimuli (courtship song) are not. For pulse stimuli in particular, AMMC neurons simply low-pass filter the receptor population response, thus preserving low-frequency temporal features (such as the spacing of song pulses) for analysis by postsynaptic neurons. We also compare responses in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans, and find that pulse song responses are largely similar, despite differences in the spectral content of their songs. Our recordings inform how downstream circuits may read out behaviorally relevant information from central neurons in the AMMC.
Resumo:
Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.
Resumo:
Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.
Resumo:
Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ∼10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ∼10 nm resolution while continuously covering the range of ∼10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands. © 2013 Needham et al.