3 resultados para Low altitude flight
em Cambridge University Engineering Department Publications Database
Resumo:
Using transonic blowdown windtunnel experiments, the 2D unsteady shock motion on a NACA0012 aerofoil is examined at various frequencies typical for helicopter blades in forward flight. The aerofoil is subjected to freestream velocities oscillating periodically between M = 0.66 and M = 0.77. Unsteady pressure traces and schlieren images are analyzed over a range of low reduced frequencies to provide information on shock location and strength throughout the cycle. Unsteady effects were noticeable even at very low reduced frequencies (down to O(0.01). However, through the range of frequencies investigated, and within experimental error, the unsteady shock location showed no discernible lag compared to the quasi-steady behaviour. On the other hand, significant variations were observed in shock strengths with the upstream running part of the cycle (decreasing Mach number) displaying considerably stronger shocks than during the accelerating part of the cycle. It could be shown that this variation in shock strength is primarily caused by the shock motion modifying the relative shock Mach number. As a result is was possible to use the quasi-steady results to predict the unsteady shock behaviour at the frequencies investigated here (below 0(0.1)).
Resumo:
Using transonic blowdown windtunnel experiments, the 2D unsteady shock motion on a NACA0012 aerofoil is examined at various frequencies typical for helicopter blades in forward flight. The aerofoil is subjected to freestream velocities oscillating periodically between M = 0.66 and M = 0.77. Unsteady pressure traces and schlieren images are analyzed over a range of low reduced frequencies to provide information on shock location and strength throughout the cycle. Unsteady effects were noticeable even at very low reduced frequencies (down to O(0.01). However, through the range of frequencies investigated, and within experimental error, the unsteady shock location showed no discernible lag compared to the quasi-steady behaviour. On the other hand, significant variations were observed in shock strengths with the upstream running part of the cycle (decreasing Mach number) displaying considerably stronger shocks than during the accelerating part of the cycle. It could be shown that this variation in shock strength is primarily caused by the shock motion modifying the relative shock Mach number. As a result is was possible to use the quasi-steady results to predict the unsteady shock behaviour at the frequencies investigated here (below 0(0.1)).
Resumo:
Within the low Reynolds number regime at which birds and small air vehicles operate (Re=15,000-500,000), flow is beset with laminar separation bubbles and bubble burst which can lead to loss of lift and early onset of stall. Recent video footage of an eagle's wings in flight reveals an inconspicuous wing feature: the sudden deployment of a row of feathers from the lower surface of the wing to create a leading edge flap. An understanding of the aerodynamic function of this flap has been developed through a series of low speed wind tunnel tests performed on an Eppler E423 aerofoil. Experiments took place at Reynolds numbers ranging from 40000 to 140000 and angles of attack up to 30°. In the lower range of tested Reynolds numbers, application of the flap was found to substantially enhance aerofoil performance by augmenting the lift and limiting the drag at certain incidences. The leading edge flap was determined to act as a transition device at low Reynolds numbers, preventing the formation of separation bubbles and consequently decreasing the speed at which stall occurs during landing and manoeuvring.