3 resultados para Local interactions

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation of the unsteady interaction between a turbulent boundary layer and a normal shock wave of strength M∞ = 1.4 subject to periodic forcing in a parallel walled duct has been conducted. Emphasis has been placed on the mechanism by which changes in the global flow field influence the local interaction structure. Static pressure measurements and high speed Schlieren images of the unsteady interaction have been obtained. The pressure rise across the interaction and the appearance of the local SBLI structure have been observed to vary during the cycle of periodic shock wave motion. The magnitude of the pressure rise across the interaction is found to be related to the relative Mach number of the unsteady shock wave as it undergoes periodic motion. Variations in the upstream Influence of the interaction are sensitive to the magnitude and direction of shock wave velocity and acceleration and it is proposed that a viscous lag exists between the point of boundary layer separation and the shock wave position. Further work exploring the implications of these findings is proposed, including studies of the variation in position of the points of boundary layer separation and reattachment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of displaying cytochromes from an amyloid fibre is modelled as perturbation of -strands in a bilayer of helical -sheets, thereby explaining the spiral morphology of decorated amyloid and the dynamic response of morphology to cytochrome conformation. The morphology of the modelled fibre, which consists of minimal energy assemblies of rigid building blocks containing two anisotropic interacting units, depends primarily on the rigid constraints between units rather than the soft interactions between them. The framework is a discrete version of the bilayered frustration principle that drives morphology in Bauhinia seedpods. We show that self-assembly of frustrated long range structures can occur if the building blocks themselves are internally frustrated, e.g. amyloid morphology is governed by the conformation of the misfolded protein nucleating the fibre. Our model supports the idea that any peptide sequence can form amyloid if bilayers can form first, albeit stabilised by additional material such as chaperones or cytochromes. Analysis of experimentally derived amyloid structures supports our conclusions and suggests a range of frustration effects, which natural amyloid fibres may exploit. From this viewpoint, amyloid appears as a molecular example of a more general universal bilayered frustration principle, which may have profound implications for materials design using fibrous systems. Our model provides quantitative guidance for such applications. The relevance to longer length scales was proved by designing the morphology of a series of macroscopic magnetic stacks. Finally, this work leads to the idea of mixing controlled morphologically defined species to generate higher-order assembly and complex functional behaviour. The systematic kinking of decorated fibres and the nested frustration of the Bauhinia seed pod are two outstanding examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A separated oblique shock reflection on the floor of a rectangular cross-section wind tunnel has been investigated at M=2.5. The study aims to determine if and how separations occurring in the corners influence the main interaction as observed around the centreline of the floor. By changing the size of the corner separations through localised suction and small corner obstructions it was shown that the shape of the separated region in the centre was altered considerably. The separation length along the floor centreline was also modified by changes to the corner separation. A simple physical model has been proposed to explain the coupling between these separated regions based on the existence of compression or shock waves caused by the displacement effect of corner separation. These corner shocks alter the adverse pressure gradient imposed on the boundary-layer elsewhere which can lead to local reductions or increases of separation length. It is suggested that a typical oblique shock wave/boundary-layer interaction in rectangular channels features several zones depending on the relative position of the corner shocks and the main incident shock wave. Based on these findings the dependence of centre-line separation length on effective wind tunnel width is hypothesised. This requires further verification through experiments or computation. © 2013 by H. Babinsky.