22 resultados para Linearity

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The novelty of this study resides in the fabrication of a bio-sensing device, based on the surface acoustic wave (SAW) on a nanocrystalline ZnO film. The ZnO film was deposited using an rf magnetron sputtering at room temperature on silicon. The deposited films showed the c-axisoriented crystallite with grain size of ∼40 nm. The immunosensing device was fabricated using photolithographic protocols on the film. As a model biomolecular recognition and immunosensing, biospecific interaction between a 6-(2,4-dinitrophenyl) aminohexanoic acid (DNP) antigen and its antibody was employed, demonstrating the shifts of resonant frequencies on SAW immunosensing device. The device exhibited a linearity as a function of the antibody concentration in the range of 20∼20,000 ng/ml. © 2009 American Scientific Publishers. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated EOM VCSELs is shown to offer high linearity (92dB/Hz 2/3 at 6GHz) and by extrapolation ∼90dB/Hz2/3 up to 20GHz. Successful modulation with IEEE 802.11g signals is demonstrated at 6GHz with a 12dB dynamic range. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peel test is commonly used to determine the strength of adhesive joints. In its simplest form, a thin flexible strip which has been bonded to a rigid surface is peeled from the substrate at a constant rate and the peeling force which is applied to the debonding surfaces by the tension in the tape is measured. Peeling can be carried out with the peel angle, i.e. the angle made by the peel force with the substrate surface, from any value above about 10° although peeling tests at 90 and 180° are most common. If the tape is sufficiently thin for its bending resistance to be negligibly small then as well as the debonding or decohesion energy associated with the adhesive in and around the point of separation, the relation between the peeling force and the peeling angle is influenced both by the mechanical properties of the tape and any pre-strain locked into the tape during its application to the substrate. The analytic solution for a tape material which can be idealised as elastic perfectly-plastic is well established. Here, we present a more general form of analysis, applicable in principle to any constitutive relation between tape load and tape extension. Non-linearity between load and extension is of increasing significance as the peel angle is decreased: the model presented is consistent with existing equations describing the failure of a lap joint between non-linear materials. The analysis also allows for energy losses within the adhesive layer which themselves may be influenced by both peel rate and peel angle. We have experimentally examined the application of this new analysis to several specific peeling cases including tapes of cellophane, poly-vinyl chloride and PTFE. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This theoretical paper examines a non-normal and non-linear model of a horizontal Rijke tube. Linear and non-linear optimal initial states, which maximize acoustic energy growth over a given time from a given energy, are calculated. It is found that non-linearity and non-normality both contribute to transient growth and that, for this model, linear optimal states are only a good predictor of non-linear optimal states for low initial energies. Two types of non-linear optimal initial state are found. The first has strong energy growth during the first period of the fundamental mode but loses energy thereafter. The second has weaker energy growth during the first period but retains high energy for longer. The second type causes triggering to self-sustained oscillations from lower energy than the first and has higher energy in the fundamental mode. This suggests, for instance, that low frequency noise will be more effective at causing triggering than high frequency noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement system for magnetic fields or electric currents uses a single-core fluxgate, magneto-inductive or magneto-impedance device driven from a radio frequency excitation source. Flux nulling feedback circuitry is provided to maintain the core of the sensor at substantially zero net flux and improve the linearity and dynamic response of the sensor system. A high pass filter is provided for reducing the dc effects of the ohmic resistance of the coil and lead wires on the effectiveness of the flux nulling feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added variability. We suggest an alternative theory according to which short-term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that a synapse solves the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives, acting as a recursive filter. We show that the dynamics of short-term synaptic depression closely resemble those required for optimal filtering, and that they indeed support high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a micro-electro-mechanical tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. Design aspects of the tilt sensor are first introduced and a design trade-off between sensitivity, resolution and robustness is addressed. A prototype sensor is microfabricated in a foundry process. The sensor is characterized to validate predictive analytical and FEA models of performance. The prototype is tested over tilt angles ranging over ±90 degrees and the linearity of the sensor is found to be better than 1.4% over the tilt angle range of ±20°. The noise-limited resolution of the sensor is found to be approximately 0.00026 degrees for an integration time of 0.6 seconds. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents for the first time the performance of a silicon-on-insulator (SOI) p-n thermodiode, which can operate in an extremely wide temperature range of 200°C to 700°C while maintaining its linearity. The thermodiode is embedded in a thin dielectric membrane underneath a tungsten microheater, which allows the diode characterization at very high temperature (> 800°C). The effect of the junction area (Aj) on the thermodiode linearity, sensitivity and self-heating is experimentally and theoretically investigated. Results on the long-term diode stability at high temperature are also reported. © 2013 IEEE.