3 resultados para Leveraged buyouts [LBO’s]
em Cambridge University Engineering Department Publications Database
Resumo:
Abstract: Starting in the 1980s, household-level water treatment and safe storage systems (HWTS) have been developed as simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Although existing literature related to HWTS and innovation diffusion theories proposed ample critical factors and recommendations, there is a lack of holistic and systemic approach to integrate these findings. It is proposed that system dynamics modelling can be a promising tool to map the inter-relationships of different critical factors and to understand the structure of HWTS dissemination process, which may lead to identifying high impact, leveraged mitigation strategies to scale-up HWTS adoption and sustained use.
Resumo:
University spin-out (USO) companies play an increasingly important role in generating value from radical, generic technologies, but this translation requires significant resources from other players to reach the market. Seven case studies illuminate how relationships with each type of partner can be leveraged to help the firm create value. We find that most firms in the sample are aware of the importance of corporate partners and actively seek to cultivate these relationships, but may not be taking full advantage of the resources available through nonparent academic institutions and other USOs with similar or complementary technologies. © 2013 The Authors. R&D Management © 2013 Blackwell Publishing Ltd.
Resumo:
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.