16 resultados para Lenses.

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the principle of operation, construction and testing of a liquid crystal lens which is controlled by distributing voltages across the control electrodes, which are in turn controlled by adjusting the phase of the applied voltages. As well as (positive and negative) defocus, then lenses can be used to control tip/tilt, astigmatism, and to create variable axicons. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on our work on producing liquid crystal switchable modal lenses and their use in a compound lens system in order to produce variable focus/zoom lenses. We describe work on producing a high power lens, and present theoretical work on off-axis phase modulation in a liquid crystal lens which is important in order to be able to carry out a complete optical design of a liquid crystal lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present and demonstrate a technique for producing a high-speed variable focus lens using a fixed birefringent lens and a ferroelectric liquid crystal cell as a polarization switch. A calcite lenses with ordinary and extraordinary focal lengths of 109mm and 88mm respectively, was used to demonstrate focus switching at frequencies of up to 3kHz. Two identical lenses and a single liquid crystal were also used to demonstrate zoom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive lens, which has variable focus and is rapidly controllable with simple low-power electronics, has numerous applications in optical telecommunications devices, 3D display systems, miniature cameras and adaptive optics. The University of Durham is developing a range of adaptive liquid crystal lenses, and here we describe work on construction of modal liquid crystal lenses. This type of lens was first described by Naumov [1] and further developed by others [24]. In this system, a spatially varying and circularly symmetric voltage profile can be generated across a liquid-crystal cell, generating a lens-like refractive index profile. Such devices are simple in design, and do not require a pixellated structure. The shape and focussing power of the lens can be controlled by the variation of applied electric field and frequency. Results show adaptive lenses operating at optical wavelengths with continuously variable focal lengths from infinity to 70 cm. Switching speeds are of the order of 1 second between focal positions. Manufacturing methods of our adaptive lenses are presented, together with the latest results to the performance of these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (∼2.3 λ) and a near diffraction-limited spot size of 400 nm (∼0.61 λ). © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forests of carbon nanotubes have been termed as the darkest man-made materials. Such materials exhibit near-perfect optical absorption (reflectance∼0.045%) due to low reflectance and nanoscale surface roughness. We have demonstrated the utilization of these perfectly absorbing forests to produce binary amplitude cylindrical Fresnel lenses. The opaque Fresnel zones are defined by the dark nanotube forests and these lenses display efficient focusing performance at optical wavelengths. Lensing performance was analyzed both computationally and experimentally with good agreement. Such nanostructure based lenses have many potential applications in devices like photovoltaic solar cells. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results. © 2014 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the architecture of a vector-matrix multiplier (MVM) is simulated. The optical design can be made compact by the use of GRIN lenses for the optical fan-in. The intended application area was in storage area networks (SANs) but the concept can be applied to a neural network. © 2011 Allerton Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A holographic projection system with optical zoom is demonstrated. By using a combination of a LC lens and an encoded Fresnel lens on the LCoS panel, we can control zoom in a holographic projector. The magnification can be electrically adjusted by tuning the focal length of the combination of the two lenses. The zoom ratio of the holographic projection system can reach 3.7:1 with continuous zoom function. The optical zoom function can decrease the complexity of the holographic projection system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thumbnail image of graphical abstract Reflective binary Fresnel lenses fabricated so far all suffer from reflections from the opaque zones and hence degradation in focusing and lensing properties. Here a solution is found to this problem by developing a carbon nanotube Fresnel lens, where the darkest man-made material ever, i.e., low-density vertically aligned carbon nanotube arrays, are exploited.