15 resultados para Least-energy Solutions
em Cambridge University Engineering Department Publications Database
Resumo:
Using energy more efficiently is essential if carbon emissions are to be reduced. According to the International Energy Agency (IEA), energy efficiency improvements represent the largest and least costly savings in carbon emissions, even when compared with renewables, nuclear power and carbon capture and storage. Yet, how should future priorities be directed? Should efforts be focused on light bulbs or diesel engines, insulating houses or improving coal-fired power stations? Previous attempts to assess energy efficiency options provide a useful snapshot for directing short-term responses, but are limited to only known technologies developed under current economic conditions. Tomorrow's economic drivers are not easy to forecast, and new technical solutions often present in a disruptive manner. Fortunately, the theoretical and practical efficiency limits do not vary with time, allowing the uncertainty of economic forecasts to be avoided and the potential of yet to be discovered efficient designs to be captured. This research aims to provide a rational basis for assessing all future developments in energy efficiency. The global fow of energy through technical devices is traced from fuels to final services, and presented as an energy map to convey visually the scale of energy use. An important distinction is made between conversion devices, which upgrade energy into more useable forms, and passive systems, from which energy is lost as low temperature heat, in exchange for final services. Theoretical efficiency limits are calculated for conversion devices using exergy analysis, and show a 89% potential reduction in energy use. Efforts should be focused on improving the efficiency of, in relative order: biomass burners, refrigeration systems, gas burners and petrol engines. For passive systems, practical utilisation limits are calculated based on engineering models, and demonstrate energy savings of 73% are achievable. Significant gains are found in technical solutions that increase the thermal insulation of building fabrics and reduce the mass of vehicles. The result of this work is a consistent basis for comparing efficiency options, that can enable future technical research and energy policy to be directed towards the actions that will make the most difference.
Resumo:
Concern over the global energy system, whether driven by climate change, national security, or fears of shortage, is being discussed widely and in every arena but with a bias toward energy supply options. While demand reduction is often mentioned in passing, it is rarely a priority for implementation, whether through policy or through the search for innovation. This paper aims to draw attention to the opportunity for major reduction in energy demand, by presenting an analysis of how much of current global energy demand could be avoided. Previous work led to a "map" of global energy use that traces the flow of energy from primary sources (fuels or renewable sources), through fuel refinery, electricity generation, and end-use conversion devices, to passive systems and the delivery of final energy services (transport, illumination, and sustenance). The key passive systems are presented here and analyzed through simple engineering models with scalar equations using data based on current global practice. Physically credible options for change to key design parameters are identified and used to predict the energy savings possible for each system. The result demonstrates that 73% of global energy use could be saved by practically achievable design changes to passive systems. This reduction could be increased by further efficiency improvements in conversion devices. A list of the solutions required to achieve these savings is provided.
Resumo:
High speed photographic images of jets formed from dilute solutions of polystyrene in diethyl phthalate ejected from a piezoelectric drop-on-demand inkjet head have been analyzed in order to study the formation and distribution of drops as the ligament collapses. Particular attention has been paid to satellite drops, and their relative separation and sizes. The effect of polymer concentration was investigated. The distribution of nearest-neighbour centre spacing between the drops formed from the ligament is better described by a 2-parameter modified gamma distribution than by a Gaussian distribution. There are (at least) two different populations of satellite size relative to the main drop size formed at normal jetting velocities, with ratios of about three between the diameters of the main drop and the successive satellite sizes. The distribution of the differences in drop size between neighbouring drops is close to Gaussian, with a small non-zero mean for low polymer concentrations, which is associated with the conical shape of the ligament prior to its collapse and the formation of satellites. Higher polymer concentrations result in slower jets for the same driving impulse, and also a tendency to form ligaments with a near-constant width. Under these conditions the mean of the distribution of differences in nearest-neighbour drop size was zero.
Resumo:
The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.
Resumo:
The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.
Resumo:
Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.
Resumo:
In this paper, a novel MPC strategy is proposed, and referred to as asso MPC. The new paradigm features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. This cost choice is motivated by the successful development of LASSO theory in signal processing and machine learning. In the latter fields, sum-of-norms regularisation have shown a strong capability to provide robust and sparse solutions for system identification and feature selection. In this paper, a discrete-time dual-mode asso MPC is formulated, and its stability is proven by application of standard MPC arguments. The controller is then tested for the problem of ship course keeping and roll reduction with rudder and fins, in a directional stochastic sea. Simulations show the asso MPC to inherit positive features from its corresponding regressor: extreme reduction of decision variables' magnitude, namely, actuators' magnitude (or variations), with a finite energy error, being particularly promising for over-actuated systems. © 2012 AACC American Automatic Control Council).
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
This paper presents a review undertaken to understand the concept of 'future-proofing' the energy performance of buildings. The long lifecycles of the building stock, the impacts of climate change and the requirements for low carbon development underline the need for long-term thinking from the early design stages. 'Future-proofing' is an emerging research agenda with currently no widely accepted definition amongst scholars and building professionals. In this paper, it refers to design processes that accommodate explicitly full lifecycle perspectives and energy trends and drivers by at least 2050, when selecting energy efficient measures and low carbon technologies. A knowledge map is introduced, which explores the key axes (or attributes) for achieving a 'future-proofed' energy design; namely, coverage of sustainability issues, lifecycle thinking, and accommodating risks and uncertainties that affect the energy consumption. It is concluded that further research is needed so that established building energy assessment methods are refined to better incorporate future-proofing. The study follows an interdisciplinary approach and is targeted at design teams with aspirations to achieve resilient and flexible low-energy buildings over the long-term. © 2012 Elsevier Ltd.
Resumo:
The aim of this study was to explore how the remote control of appliances/lights (active energy management system) affected household well-being, compared to in-home displays (passive energy management system). A six-week exploratory study was conducted with 14 participants divided into the following three groups: active; passive; and no equipment. The effect on well-being was measured through thematic analysis of two semi-structured interviews for each participant, administered at the start and end of the study. The well-being themes were based on existing measures of Satisfaction and Affect. The energy demand for each participant was also measured for two weeks without intervention, and then compared after four weeks with either the passive or active energy management systems. These measurements were used to complement the well-being analysis. Overall, the measure of Affect increased in the passive group but Satisfaction decreased; however, all three measures on average decreased in the active group. The measured energy demand also highlighted a disconnect between well-being and domestic energy consumption. The results point to a need for further investigation in this field; otherwise, there is a risk that nationally implemented energy management solutions may negatively affect our happiness and well-being. © 2013 Elsevier Ltd.
Resumo:
We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.
Resumo:
We demonstrate how a prior assumption of smoothness can be used to enhance the reconstruction of free energy profiles from multiple umbrella sampling simulations using the Bayesian Gaussian process regression approach. The method we derive allows the concurrent use of histograms and free energy gradients and can easily be extended to include further data. In Part I we review the necessary theory and test the method for one collective variable. We demonstrate improved performance with respect to the weighted histogram analysis method and obtain meaningful error bars without any significant additional computation. In Part II we consider the case of multiple collective variables and compare to a reconstruction using least squares fitting of radial basis functions. We find substantial improvements in the regimes of spatially sparse data or short sampling trajectories. A software implementation is made available on www.libatoms.org.