16 resultados para Learning. Mathematics. Quadratic Functions. GeoGebra

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace’s method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designers are typically male, under 35 years old and unimpaired. Users can be of any age and currently over 15% will have some form of impairment. As a result a vast array of consumer products suit youthful males and in many cases exclude other demographics (e.g. Keates and Clarkson, 2004). In studying the way a range of users learn how to use new products, key cognitive difficulties are revealed and linked back to the areas of the product causing the problems. The trials were structured so each user had to complete a specific set of tasks and were consistent across the user spectrum. The tasks set aimed to represent both everyday usage and less familiar functions. Whilst the knowledge gained could provide designers with valuable guidelines for the specific products examined, a more general abstraction provides knowledge of the pitfalls to avoid in the design of other product families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The code provided here originally demonstrated the main algorithms from Rasmussen and Williams: Gaussian Processes for Machine Learning. It has since grown to allow more likelihood functions, further inference methods and a flexible framework for specifying GPs.