21 resultados para Learning in pairs

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was different across the pair. When each perturbation direction was associated with a different bimanual context, such as movement of the arms in the same direction versus movement in the opposite direction, interference was dramatically reduced. This occurred over a short period of training and was seen for both dynamic and visuomotor perturbations, suggesting a partitioning of motor learning for the different bimanual contexts. Further support for this was found in a series of transfer experiments. Having learned a single dynamic or visuomotor perturbation in one bimanual context, subjects showed incomplete transfer of this learning when the context changed, even though the perturbation remained the same. In addition, we examined a bimanual context in which one arm was moved passively and show that the reduction in interference requires active movement. The sensory consequences of movement are thus insufficient to allow opposing perturbations to be co-represented. Our results suggest different bimanual movement contexts engage at least partially separate representations of dynamics and kinematics in the motor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel framework is provided for very fast model-based reinforcement learning in continuous state and action spaces. It requires probabilistic models that explicitly characterize their levels of condence. Within the framework, exible, non-parametric models are used to describe the world based on previously collected experience. It demonstrates learning on the cart-pole problem in a setting where very limited prior knowledge about the task has been provided. Learning progressed rapidly, and a good policy found after only a small number of iterations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning is often understood as an organism's gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Learning to learn' phenomena have been widely investigated in cognition, perception and more recently also in action. During concept learning tasks, for example, it has been suggested that characteristic features are abstracted from a set of examples with the consequence that learning of similar tasks is facilitated-a process termed 'learning to learn'. From a computational point of view such an extraction of invariants can be regarded as learning of an underlying structure. Here we review the evidence for structure learning as a 'learning to learn' mechanism, especially in sensorimotor control where the motor system has to adapt to variable environments. We review studies demonstrating that common features of variable environments are extracted during sensorimotor learning and exploited for efficient adaptation in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may underlie the unsurpassed flexibility and adaptability of the motor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synaptic plane rendered by an array of smart pixels was described regarding its application as a complementary component for neural network implementation. The smart spatial light modulator featured auto-modification abilities. Thus, an optical system incorporating this device can show self-reliant optical learning. Furthermore, the optical system design, in the area of its optical interconnection scheme, is highly flexible since the independent weight-plane pixels eliminated the difficulty between weight update calculation and weight representation.