11 resultados para Kerr non-linearity
em Cambridge University Engineering Department Publications Database
Resumo:
The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.
Resumo:
The peel test is commonly used to determine the strength of adhesive joints. In its simplest form, a thin flexible strip which has been bonded to a rigid surface is peeled from the substrate at a constant rate and the peeling force which is applied to the debonding surfaces by the tension in the tape is measured. Peeling can be carried out with the peel angle, i.e. the angle made by the peel force with the substrate surface, from any value above about 10° although peeling tests at 90 and 180° are most common. If the tape is sufficiently thin for its bending resistance to be negligibly small then as well as the debonding or decohesion energy associated with the adhesive in and around the point of separation, the relation between the peeling force and the peeling angle is influenced both by the mechanical properties of the tape and any pre-strain locked into the tape during its application to the substrate. The analytic solution for a tape material which can be idealised as elastic perfectly-plastic is well established. Here, we present a more general form of analysis, applicable in principle to any constitutive relation between tape load and tape extension. Non-linearity between load and extension is of increasing significance as the peel angle is decreased: the model presented is consistent with existing equations describing the failure of a lap joint between non-linear materials. The analysis also allows for energy losses within the adhesive layer which themselves may be influenced by both peel rate and peel angle. We have experimentally examined the application of this new analysis to several specific peeling cases including tapes of cellophane, poly-vinyl chloride and PTFE. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
This theoretical paper examines a non-normal and non-linear model of a horizontal Rijke tube. Linear and non-linear optimal initial states, which maximize acoustic energy growth over a given time from a given energy, are calculated. It is found that non-linearity and non-normality both contribute to transient growth and that, for this model, linear optimal states are only a good predictor of non-linear optimal states for low initial energies. Two types of non-linear optimal initial state are found. The first has strong energy growth during the first period of the fundamental mode but loses energy thereafter. The second has weaker energy growth during the first period but retains high energy for longer. The second type causes triggering to self-sustained oscillations from lower energy than the first and has higher energy in the fundamental mode. This suggests, for instance, that low frequency noise will be more effective at causing triggering than high frequency noise.
Resumo:
Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added variability. We suggest an alternative theory according to which short-term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that a synapse solves the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives, acting as a recursive filter. We show that the dynamics of short-term synaptic depression closely resemble those required for optimal filtering, and that they indeed support high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.
Resumo:
The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.
Resumo:
In the arena of vibration energy harvesting, the key technical challenges continue to be low power density and narrow operational frequency bandwidth. While the convention has relied upon the activation of the fundamental mode of resonance through direct excitation, this article explores a new paradigm through the employment of parametric resonance. Unlike the former, oscillatory amplitude growth is not limited due to linear damping. Therefore, the power output can potentially build up to higher levels. Additionally, it is the onset of non-linearity that eventually limits parametric resonance; hence, this approach can also potentially broaden the operating frequency range. Theoretical prediction and numerical modelling have suggested an order higher in oscillatory amplitude growth. An experimental macro-sized electromagnetic prototype (practical volume of ∼1800 cm3) when driven into parametric resonance, has demonstrated around 50% increase in half power band and an order of magnitude higher peak power density normalised against input acceleration squared (293 μW cm-3 m-2 s4 with 171.5 mW at 0.57 m s-2) in contrast to the same prototype directly driven at fundamental resonance (36.5 μW cm-3 m-2 s4 with 27.75 mW at 0.65 m s-2). This figure suggests promising potentials while comparing with current state-of-the-art macro-sized counterparts, such as Perpetuum's PMG-17 (119 μW cm-3 m-2 s4). © The Author(s) 2013.
Resumo:
Underground structures constitute crucial components of the transportation networks. Considering their significance for modern societies, their proper seismic design is of great importance. However, this design may become very tricky, accounting of the lack of knowledge regarding their seismic behavior. Several issues that are significantly affecting this behavior (i.e. earth pressures on the structure, seismic shear stresses around the structure, complex deformation modes for rectangular structures during shaking etc.) are still open. The problem is wider for the non-circular (i.e. rectangular) structures, were the soilstructure interaction effects are expected to be maximized. The paper presents representative experimental results from a test case of a series of dynamic centrifuge tests that were performed on rectangular tunnels embedded in dry sand. The tests were carried out at the centrifuge facility of the University of Cambridge, within the Transnational Task of the SERIES EU research program. The presented test case is also numerically simulated and studied. Preliminary full dynamic time history analyses of the coupled soil-tunnel system are performed, using ABAQUS. Soil non-linearity and soil-structure interaction are modeled, following relevant specifications for underground structures and tunnels. Numerical predictions are compared to experimental results and discussed. Based on this comprehensive experimental and numerical study, the seismic behavior of rectangular embedded structures is better understood and modeled, consisting an important step in the development of appropriate specifications for the seismic design of rectangular shallow tunnels.