10 resultados para Kernel density estimation

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the Gaussian process density sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a distribution defined by a density that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We describe two such MCMC methods. Both methods also allow inference of the hyperparameters of the Gaussian process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the Gaussian Process Density Sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a fixed density function that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We can also infer the hyperparameters of the Gaussian process. We compare this density modeling technique to several existing techniques on a toy problem and a skullreconstruction task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mixtures of factor analyzers (MFA) model allows data to be modeled as a mixture of Gaussians with a reduced parametrization. We present the formulation of a nonparametric form of the MFA model, the Dirichlet process MFA (DPMFA). The proposed model can be used for density estimation or clustering of high dimensiona data. We utilize the DPMFA for clustering the action potentials of different neurons from extracellular recordings, a problem known as spike sorting. DPMFA model is compared to Dirichlet process mixtures of Gaussians model (DPGMM) which has a higher computational complexity. We show that DPMFA has similar modeling performance in lower dimensions when compared to DPGMM, and is able to work in higher dimensions. ©2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mixture of Gaussians fit to a single curved or heavy-tailed cluster will report that the data contains many clusters. To produce more appropriate clusterings, we introduce a model which warps a latent mixture of Gaussians to produce nonparametric cluster shapes. The possibly low-dimensional latent mixture model allows us to summarize the properties of the high-dimensional clusters (or density manifolds) describing the data. The number of manifolds, as well as the shape and dimension of each manifold is automatically inferred. We derive a simple inference scheme for this model which analytically integrates out both the mixture parameters and the warping function. We show that our model is effective for density estimation, performs better than infinite Gaussian mixture models at recovering the true number of clusters, and produces interpretable summaries of high-dimensional datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees and Wishart processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches. © 2009 IEEE.