22 resultados para KNOWLEDGE OF RESULTS
em Cambridge University Engineering Department Publications Database
Resumo:
The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. Evidence was obtained that for a large downstream vane, the flow conditions in the rotor passage, at any instant in time, are close to being steady state.
Resumo:
Raising design quality and value in the built environment requires continuous improvement, drawing on feedback from clients or occupiers and other industry players. The challenging task for architectural and engineering designers has always been to use their intellectual knowledge to deliver both forms of benefits, tangibles and intangibles, in the built environment. Increasingly as clients demand best value for money, there is a greater need to understand the potential from intangibles, to see projects not as ends in themselves but as means to improved quality of life and wealth creation. As we begin to understand more about how - through the design of the built environment - to deliver these improvements in outcomes, clients will be better placed to expect their successful delivery from designers, and designers themselves will be better placed to provide them. This paper discusses cross-disciplinary issues about intangibles and is aimed at designers, clients, investors and entrepreneurs within the built environment. It presents some findings from a minuscule study that investigated intangible benefits in a new primary school. © 2004 IEEE.
Resumo:
This paper addresses the need for computer support in aerospace design. A review of current design methodologies and computer support tools is presented and the need for further support in aerospace design, particularly in the early formative stages of the design process, is discussed. A parameter-based model of design, founded on the assumption that a design process can be constructed from a predefined set of tasks, is proposed for aerospace design. This is supported by knowledge of possible tasks in which the confidence in key design parameters is used as a basis for identifying, or signposting, the next task. A prototype implementation of the signposting model, for use in the design of helicopter rotor blades, is described and results from trials of the tool are presented. Further areas of research are discussed
Resumo:
Micro-scale abrasion (ball cratering) tests were performed with different combinations of ball and bulk specimen materials, under different test conditions, such as load and abrasive slurry concentration. Wear modes were classified into two types: with rolling particle motion and with grooving particle motion. Wear rates observed with rolling particle motion were relatively insensitive to test conditions, whereas with grooving motion they varied much more. It is suggested that rolling abrasion is therefore a more appropriate mode if reproducible test results are desired. The motion of the abrasive particles can be reliably predicted from the knowledge of hardnesses and elastic properties of the ball and the specimen, and from the normal load and the abrasive slurry concentration. General trends in wear resistance measured in the micro-scale abrasion test with rolling particle motion are similar to those reported in tests with fixed abrasives with sliding particle motion, although the variation in wear resistance with hardness is significantly smaller. © 2004 Published by Elsevier B.V.
Resumo:
Skillful tool use requires knowledge of the dynamic properties of tools in order to specify the mapping between applied force and tool motion. Importantly, this mapping depends on the orientation of the tool in the hand. Here we investigate the representation of dynamics during skillful manipulation of a tool that can be grasped at different orientations. We ask whether the motor system uses a single general representation of dynamics for all grasp contexts or whether it uses multiple grasp-specific representations. Using a novel robotic interface, subjects rotated a virtual tool whose orientation relative to the hand could be varied. Subjects could immediately anticipate the force direction for each orientation of the tool based on its visual geometry, and, with experience, they learned to parameterize the force magnitude. Surprisingly, this parameterization of force magnitude showed limited generalization when the orientation of the tool changed. Had subjects parameterized a single general representation, full generalization would be expected. Thus, our results suggest that object dynamics are captured by multiple representations, each of which encodes the mapping associated with a specific grasp context. We suggest that the concept of grasp-specific representations may provide a unifying framework for interpreting previous results related to dynamics learning.
Resumo:
The near-surface motility of bacteria is important in the initial formation of biofilms and in many biomedical applications. The swimming motion of Escherichia coli near a solid surface is investigated both numerically and experimentally. A boundary element method is used to predict the hydrodynamic entrapment of E. coli bacteria, their trajectories, and the minimum separation of the cell from the surface. The numerical results show the existence of a stable swimming distance from the boundary that depends only on the shape of the cell body and the flagellum. The experimental validation of the numerical approach allows one to use the numerical method as a predictive tool to estimate with reasonable accuracy the near-wall motility of swimming bacteria of known geometry. The analysis of the numerical database demonstrated the existence of a correlation between the radius of curvature of the near-wall circular trajectory and the separation gap. Such correlation allows an indirect estimation of either of the two quantities by a direct measure of the other without prior knowledge of the cell geometry. This result may prove extremely important in those biomedical and technical applications in which the near-wall behavior of bacteria is of fundamental importance.
Resumo:
In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behavior in general depends on the accurate modeling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behavior of randomly formed turbulent spots. The model is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor midspan boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.
Resumo:
State and regional policies, such as low carbon fuel standards (LCFSs), increasingly mandate that transportation fuels be examined according to their greenhouse gas (GHG) emissions. We investigate whether such policies benefit from determining fuel carbon intensities (FCIs) locally to account for variations in fuel production and to stimulate improvements in FCI. In this study, we examine the FCI of transportation fuels on a lifecycle basis within a specific state, Minnesota, and compare the results to FCIs using national averages. Using data compiled from 18 refineries over an 11-year period, we find that ethanol production is highly variable, resulting in a 42% difference between carbon intensities. Historical data suggests that lower FCIs are possible through incremental improvements in refining efficiency and the use of biomass for processing heat. Stochastic modeling of the corn ethanol FCI shows that gains in certainty due to knowledge of specific refinery inputs are overwhelmed by uncertainty in parameters external to the refiner, including impacts of fertilization and land use change. The LCA results are incorporated into multiple policy scenarios to demonstrate the effect of policy configurations on the use of alternative fuels. These results provide a contrast between volumetric mandates and LCFSs. © 2011 Elsevier Ltd.
Resumo:
This paper follows the work of A.V. Shanin on diffraction by an ideal quarter-plane. Shanin's theory, based on embedding formulae, the acoustic uniqueness theorem and spherical edge Green's functions, leads to three modified Smyshlyaev formulae, which partially solve the far-field problem of scattering of an incident plane wave by a quarter-plane in the Dirichlet case. In this paper, we present similar formulae in the Neumann case, and describe a numerical method allowing a fast computation of the diffraction coefficient using Shanin's third modified Smyshlyaev formula. The method requires knowledge of the eigenvalues of the Laplace-Beltrami operator on the unit sphere with a cut, and we also describe a way of computing these eigenvalues. Numerical results are given for different directions of incident plane wave in the Dirichlet and the Neumann cases, emphasising the superiority of the third modified Smyshlyaev formula over the other two. © 2011 Elsevier B.V.
Resumo:
Product-service systems are seen by many authors to offer potential for significant sustainability benefit. Manufacturing companies are said to be essential to such a change through their influence over product performance and over the use and end-of-life stages. Yet linking these stages such that the producer is incentivized to improve the performance of later stages is still a challenge. This paper argues for placing the producer at the centre of a new arrangement: by seeking to utilize the producer's knowledge of designing and the knowledge of volume production, through creation of platforms, while cooperating closely with other actors. The paper describes three case studies that have used such an approach to design and implement new food production systems. Based on 12 months of action research observations, 10 participating organizations from the cases were studied, and the implemented solutions assessed for environmental, economic and social performance. The results demonstrate a high level of sustainability benefit is achievable using platforms and partners to design product-service systems, while highlighting that changes to production arrangements are necessary but not sufficient to improve whole life-cycle environmental performance of product-service systems, and that producers need to cooperate closely with other actors to achieve the claimed benefits.