2 resultados para Jon Penn
em Cambridge University Engineering Department Publications Database
Resumo:
A system of computer assisted grammar construction (CAGC) is presented in this paper. The CAGC system is designed to generate broad-coverage grammars for large natural language corpora by utilizing both an extended inside-outside algorithm and an automatic phrase bracketing (AUTO) system which is designed to provide the extended algorithm with constituent information during learning. This paper demonstrates the capability of the CAGC system to deal with realistic natural language problems and the usefulness of the AUTO system for constraining the inside-outside based grammar re-estimation. Performance results, including coverage, recall and precision, are presented for a grammar constructed for the Wall Street Journal (WSJ) corpus using the Penn Treebank.
Resumo:
Acoustic communication in drosophilid flies is based on the production and perception of courtship songs, which facilitate mating. Despite decades of research on courtship songs and behavior in Drosophila, central auditory responses have remained uncharacterized. In this study, we report on intracellular recordings from central neurons that innervate the Drosophila antennal mechanosensory and motor center (AMMC), the first relay for auditory information in the fly brain. These neurons produce graded-potential (nonspiking) responses to sound; we compare recordings from AMMC neurons to extracellular recordings of the receptor neuron population [Johnston's organ neurons (JONs)]. We discover that, while steady-state response profiles for tonal and broadband stimuli are significantly transformed between the JON population in the antenna and AMMC neurons in the brain, transient responses to pulses present in natural stimuli (courtship song) are not. For pulse stimuli in particular, AMMC neurons simply low-pass filter the receptor population response, thus preserving low-frequency temporal features (such as the spacing of song pulses) for analysis by postsynaptic neurons. We also compare responses in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans, and find that pulse song responses are largely similar, despite differences in the spectral content of their songs. Our recordings inform how downstream circuits may read out behaviorally relevant information from central neurons in the AMMC.