74 resultados para Job Shop Problem

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Confronted with high variety and low volume market demands, many companies, especially the Japanese electronics manufacturing companies, have reconfigured their conveyor assembly lines and adopted seru production systems. Seru production system is a new type of work-cell-based manufacturing system. A lot of successful practices and experience show that seru production system can gain considerable flexibility of job shop and high efficiency of conveyor assembly line. In implementing seru production, the multi-skilled worker is the most important precondition, and some issues about multi-skilled workers are central and foremost. In this paper, we investigate the training and assignment problem of workers when a conveyor assembly line is entirely reconfigured into several serus. We formulate a mathematical model with double objectives which aim to minimize the total training cost and to balance the total processing times among multi-skilled workers in each seru. To obtain the satisfied task-to-worker training plan and worker-to-seru assignment plan, a three-stage heuristic algorithm with nine steps is developed to solve this mathematical model. Then, several computational cases are taken and computed by MATLAB programming. The computation and analysis results validate the performances of the proposed mathematical model and heuristic algorithm. © 2013 Springer-Verlag London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.