201 resultados para Interfacial stress

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of local orientations around whiskers in deformed metal matrix composites has been used to determine the strain gradients existing in the material following tensile deformation. These strain fields have been represented as arrays of geometrically necessary dislocations, and the material flow stress predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured flow stress is reasonable, the experimentally determined strain gradients are lower by a factor of 5-10 than values obtained in previous estimates made using continuum plasticity finite element models. The local orientations around the whiskers contain a large amount of detailed information about the strain patterns in the material, and a novel approach is made to representing some of this information and to correlating it with microstructural observations. © 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple composite design methodology has been developed from the basic principles of composite component failure. This design approach applies the principles of stress field matching to develop suitable reinforcement patterns around three-dimensional details such as lugs in mechanical components. The resulting patterns are essentially curvilinear orthogonal meshes, adjusted to meet the restrictions imposed by geometric restraints and the intended manufacturing process. Whilst the principles behind the design methodology can be applied to components produced by differing manufacturing processes, the results found from looking at simple generic example problems suggest a realistic and practical generic manufacturing approach. The underlying principles of the design methodology are described and simple analyses are used to help illustrate both the methodology and how such components behave. These analyses suggest it is possible to replace high-strength steel lugs with composite components whose strength-to-weight ratio is some 4-5 times better. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Impulsivity is a vulnerability marker for drug addiction in which other behavioural traits such as anxiety and novelty seeking ('sensation seeking') are also widely present. However, inter-relationships between impulsivity, novelty seeking and anxiety traits are poorly understood. OBJECTIVE: The objective of this paper was to investigate the contribution of novelty seeking and anxiety traits to the expression of behavioural impulsivity in rats. METHODS: Rats were screened on the five-choice serial reaction time task (5-CSRTT) for spontaneously high impulsivity (SHI) and low impulsivity (SLI) and subsequently tested for novelty reactivity and preference, assessed by open-field locomotor activity (OF), novelty place preference (NPP), and novel object recognition (OR). Anxiety was assessed on the elevated plus maze (EPM) both prior to and following the administration of the anxiolytic drug diazepam, and by blood corticosterone levels following forced novelty exposure. Finally, the effects of diazepam on impulsivity and visual attention were assessed in SHI and SLI rats. RESULTS: SHI rats were significantly faster to enter an open arm on the EPM and exhibited preference for novelty in the OR and NPP tests, unlike SLI rats. However, there was no dimensional relationship between impulsivity and either novelty-seeking behaviour, anxiety levels, OF activity or novelty-induced changes in blood corticosterone levels. By contrast, diazepam (0.3-3 mg/kg), whilst not significantly increasing or decreasing impulsivity in SHI and SLI rats, did reduce the contrast in impulsivity between these two groups of animals. CONCLUSIONS: This investigation indicates that behavioural impulsivity in rats on the 5-CSRTT, which predicts vulnerability for cocaine addiction, is distinct from anxiety, novelty reactivity and novelty-induced stress responses, and thus has relevance for the aetiology of drug addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc., i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials. © 2005 The Royal Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600-700°C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100°C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material. © 1999 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1interfacial reactivity and changes in plasma gas breakdown processes. | Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate materials studied. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1 < d < 2 μm thick, with associated electrical resistivity in the range 108 < ρ < 1012 Ω·cm, coefficient of friction <0.1 and surface RMS roughness as low as 2 A. The results are discussed with respect to surface pre-treatment, ion surface bombardment, interfacial reactivity and changes in plasma gas breakdown processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.