24 resultados para Interest Similarity
em Cambridge University Engineering Department Publications Database
Resumo:
We present a matching framework to find robust correspondences between image features by considering the spatial information between them. To achieve this, we define spatial constraints on the relative orientation and change in scale between pairs of features. A pairwise similarity score, which measures the similarity of features based on these spatial constraints, is considered. The pairwise similarity scores for all pairs of candidate correspondences are then accumulated in a 2-D similarity space. Robust correspondences can be found by searching for clusters in the similarity space, since actual correspondences are expected to form clusters that satisfy similar spatial constraints in this space. As it is difficult to achieve reliable and consistent estimates of scale and orientation, an additional contribution is that these parameters do not need to be determined at the interest point detection stage, which differs from conventional methods. Polar matching of dual-tree complex wavelet transform features is used, since it fits naturally into the framework with the defined spatial constraints. Our tests show that the proposed framework is capable of producing robust correspondences with higher correspondence ratios and reasonable computational efficiency, compared to other well-known algorithms. © 1992-2012 IEEE.
Resumo:
We describe simple yet scalable and distributed algorithms for solving the maximum flow problem and its minimum cost flow variant, motivated by problems of interest in objects similarity visualization. We formulate the fundamental problem as a convex-concave saddle point problem. We then show that this problem can be efficiently solved by a first order method or by exploiting faster quasi-Newton steps. Our proposed approach costs at most O(|ε|) per iteration for a graph with |ε| edges. Further, the number of required iterations can be shown to be independent of number of edges for the first order approximation method. We present experimental results in two applications: mosaic generation and color similarity based image layouting. © 2010 IEEE.
Resumo:
Humans appear to have an inherent prosocial tendency toward one another in that we often take pleasure in seeing others succeed. This fact is almost certainly exploited by game shows, yet why watching others win elicits a pleasurable vicarious rewarding feeling in the absence of personal economic gain is unclear. One explanation is that game shows use contestants who have similarities to the viewing population, thereby kindling kin-motivated responses (for example, prosocial behavior). Using a game show-inspired paradigm, we show that the interactions between the ventral striatum and anterior cingulate cortex subserve the modulation of vicarious reward by similarity, respectively. Our results support studies showing that similarity acts as a proximate neurobiological mechanism where prosocial behavior extends to unrelated strangers.
Resumo:
This paper presents a novel approach using combined features to retrieve images containing specific objects, scenes or buildings. The content of an image is characterized by two kinds of features: Harris-Laplace interest points described by the SIFT descriptor and edges described by the edge color histogram. Edges and corners contain the maximal amount of information necessary for image retrieval. The feature detection in this work is an integrated process: edges are detected directly based on the Harris function; Harris interest points are detected at several scales and Harris-Laplace interest points are found using the Laplace function. The combination of edges and interest points brings efficient feature detection and high recognition ratio to the image retrieval system. Experimental results show this system has good performance. © 2005 IEEE.