2 resultados para Innovative use
em Cambridge University Engineering Department Publications Database
Resumo:
The use of sustainability indicators for evaluating sanitation systems is applied to the Erdos Eco- Town Project (EETP) in China for illustration. The EETP is the largest urban settlement in the world employing ecological sanitation, which incorporates separation of waste streams, dry toilets, and resource recovery. The EETP’s dry sanitation system is compared against the Dongsheng District’s conventional sewer and centralised STP. The two systems are compared based on technological, environmental, economic, and societal indicators. Overall, the two systems perform reasonably well from a technological perspective. The conventional system performs significantly better than the dry system with regards to land and energy requirements, and global warming potential; it also performs better based on freshwater aquatic and terrestrial ecotoxicity potentials, but by a smaller margin. The dry system has superior environmental performance based on water consumption, eutrophication potential, and nutrient and organic matter recovery. The dry system is a more costly system as it requires greater infrastructure and higher operational costs, and does not benefit from economies of scale. The waterborne system performs better based on the societal indicators largely because it is a well-established system.
Resumo:
In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of CO 2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H 2 production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from ∼170000 years to ∼1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to ∼630 TWh/year (instead of only ∼530 TWh/year using only EPR) without consuming additional raw materials. © 2009 Barbara Vezzoni et al.