17 resultados para Initial teacher of Physics
em Cambridge University Engineering Department Publications Database
Resumo:
It is paramount that any child or adolescent with a suspected disorder of sex development (DSD) is assessed by an experienced clinician with adequate knowledge about the range of conditions associated with DSD. If there is any doubt, the case should be discussed with the regional team. In most cases, particularly in the case of the newborn, the paediatric endocrinologist within the regional DSD team acts as the first point of contact. The underlying pathophysiology of DSD and the strengths and weaknesses of the tests that can be performed should be discussed with the parents and affected young person and tests undertaken in a timely fashion. This clinician should be part of a multidisciplinary team experienced in management of DSD and should ensure that the affected person and parents are as fully informed as possible and have access to specialist psychological support. Finally, in the field of rare conditions, it is imperative that the clinician shares the experience with others through national and international clinical and research collaboration. © 2011 Blackwell Publishing Ltd.
Resumo:
This study investigated the neuromuscular mechanisms underlying the initial stage of adaptation to novel dynamics. A destabilizing velocity-dependent force field (VF) was introduced for sets of three consecutive trials. Between sets a random number of 4-8 null field trials were interposed, where the VF was inactivated. This prevented subjects from learning the novel dynamics, making it possible to repeatedly recreate the initial adaptive response. We were able to investigate detailed changes in neural control between the first, second and third VF trials. We identified two feedforward control mechanisms, which were initiated on the second VF trial and resulted in a 50% reduction in the hand path error. Responses to disturbances encountered on the first VF trial were feedback in nature, i.e. reflexes and voluntary correction of errors. However, on the second VF trial, muscle activation patterns were modified in anticipation of the effects of the force field. Feedforward cocontraction of all muscles was used to increase the viscoelastic impedance of the arm. While stiffening the arm, subjects also exerted a lateral force to counteract the perturbing effect of the force field. These anticipatory actions indicate that the central nervous system responds rapidly to counteract hitherto unfamiliar disturbances by a combination of increased viscoelastic impedance and formation of a crude internal dynamics model.
Resumo:
In a previous study [M. Hameed, J. Fluid Mech. 594, 307 (2008)] the authors investigated the influence of insoluble surfactant on the evolution of a stretched, inviscid bubble surrounded by a viscous fluid via direct numerical simulation of the Navier-Stokes equations, and showed that the presence of surfactant can cause the bubble to contract and form a quasisteady slender thread connecting parent bubbles, instead of proceeding directly toward pinch-off as occurs for a surfactant-free bubble. Insoluble surfactant significantly retards pinch-off and the thread is stabilized by a balance between internal pressure and reduced capillary pressure due to a high concentration of surfactant that develops during the initial stage of contraction. In the present study we investigate the influence of surfactant solubility on thread formation. The adsorption-desorption kinetics for solubility is in the diffusion controlled regime. A long-wave model for the evolution of a capillary jet is also studied in the Stokes flow limit, and shows dynamics that are similar to those of the evolving bubble. With soluble surfactant, depending on parameter values, a slender thread forms but can pinch-off later due to exchange of surfactant between the interface and exterior bulk flow. © 2009 American Institute of Physics.
Resumo:
Abrasive wear is likely to occur whenever a hard asperity or a trapped hard particle is dragged across a softer surface, and it has been estimated that this form of wear contributes to as many as half of the wear problems that are met in industry. Such damaging hard particles may be external contaminants, products of corrosion or even the debris from previous wear events. During the life of a component, damage caused by individual asperity or particle interactions builds up and, at each stage of its life, the worn surface is the result of many such superimposed wear events. The practical, quantitative prediction of wear rates depends on having both a satisfactory understanding of individual interactions and a suitable procedure for combining these when subsequent contacts are made on a surface whose topography and material properties may have been much changed Irom their initial states. The paper includes some details of an analytical model for the interaction of a representative asperity and the worn surface which can both predict the frictional force and the balance between ploughing, when material is displaced but not lost from the surface, and micromachining or cutting, when actual detachment occurs. Experiments tö !rvvéSuQ8Î8 the validity of the model have been carried out on a novel wear rig which provides very precise control over the position of the asperity and the counterface. This facility, together with that of on-board profilometry, means that it is possible to carry out wear experiments on areas of the surface whose previous deformation history is well known; in this way it is possible to follow the development of a worn surface in a controlled manner as the damage from individual wear events accumulates. Experimental data on the development of such a surface, produced by repeated parallel abrasion, are compared with the predictions of the model. © 1992 IOP Publishing Ltd.
Resumo:
Users’ initial perceptions of their competence are key motivational factors for further use. However, initial tasks on a mobile operating system (OS) require setup procedures, which are currently largely inconsistent, do not provide users with clear, visible and immediate feedback on their actions, and require significant adjustment time for first-time users. This paper reports on a study with ten users, carried out to better understand how both prior experience and initial interaction with two touchscreen mobile interfaces (Apple iOS and Google Android) affected setup task performance and motivation. The results show that the reactions to setup on mobile interfaces appear to be partially dependent on which device was experienced first. Initial experience with lower-complexity devices improves performance on higher-complexity devices, but not vice versa. Based on these results, the paper proposes six guidelines for designers to design more intuitive and motivating user interfaces (UI) for setup procedures. The preliminary results indicate that these guidelines can contribute to the design of more inclusive mobile platforms and further work to validate these findings is proposed.
Resumo:
In this paper we demonstrate that the structural and optical properties of Si nanoclusters (Si ncs) formed by thermal annealing of SiOx films prepared by plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering are very different. In fact, at a fixed Si excess and annealing temperature, photoluminescence (PL) spectra of sputtered samples are redshifted with respect to PECVD samples, denoting a larger Si ncs size. In addition, PL intensity reaches a maximum in sputtered films at annealing temperatures much lower than those needed in PECVD films. These data are correlated with structural properties obtained by energy filtered transmission electron microscopy and electron energy loss spectroscopy. It is shown that in PECVD films only around 30% of the Si excess agglomerates in clusters while an almost complete agglomeration occurs in sputtered films. These data are explained on the basis of the different initial structural properties of the as-deposited films that become crucial for the subsequent evolution. © 2008 American Institute of Physics.