55 resultados para Information search – models
em Cambridge University Engineering Department Publications Database
Resumo:
Compared with construction data sources that are usually stored and analyzed in spreadsheets and single data tables, data sources with more complicated structures, such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our definition and vision for advanced data analysis addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data analysis on text-based, image-based, web-based, and network-based construction sources. It is shown in this paper that particular data preparation, representation, and analysis operations should be identified, and integrated with careful problem investigations and scientific validation measures in order to provide general frameworks in support of information search and knowledge discovery from such information-abundant data sources.
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.
Resumo:
Models capturing the connectivity between different domains of a design, e.g. between components and functions, can provide a tool for tracing and analysing aspects of that design. In this paper, video experiments are used to explore the role of cross-domain modelling in building up information about a design. The experiments highlight that cross-domain modelling can be a useful tool to create and structure design information. Findings suggest that consideration of multiple domains encourages discussion during modelling, helps identify design aspects that might otherwise be overlooked, and can help promote consideration of alternative design options. Copyright © 2002-2012 The Design Society. All rights reserved.
Resumo:
Engineering change is a significant part of any product development programme. Changes can arise at many points throughout the product life-cycle, resulting in rework which can ripple through different stages of the design process. Managing change processes is thus a critical aspect of any design project, especially in complex design. Through a literature review, this paper shows the diversity of information models used by different change management methods proposed in the literature. A classification framework for organising these change management approaches is presented. The review shows an increase in the number of cross-domain models proposed to help manage changes.
Resumo:
Obtaining accurate confidence measures for automatic speech recognition (ASR) transcriptions is an important task which stands to benefit from the use of multiple information sources. This paper investigates the application of conditional random field (CRF) models as a principled technique for combining multiple features from such sources. A novel method for combining suitably defined features is presented, allowing for confidence annotation using lattice-based features of hypotheses other than the lattice 1-best. The resulting framework is applied to different stages of a state-of-the-art large vocabulary speech recognition pipeline, and consistent improvements are shown over a sophisticated baseline system. Copyright © 2011 ISCA.
Resumo:
The task of word-level confidence estimation (CE) for automatic speech recognition (ASR) systems stands to benefit from the combination of suitably defined input features from multiple information sources. However, the information sources of interest may not necessarily operate at the same level of granularity as the underlying ASR system. The research described here builds on previous work on confidence estimation for ASR systems using features extracted from word-level recognition lattices, by incorporating information at the sub-word level. Furthermore, the use of Conditional Random Fields (CRFs) with hidden states is investigated as a technique to combine information for word-level CE. Performance improvements are shown using the sub-word-level information in linear-chain CRFs with appropriately engineered feature functions, as well as when applying the hidden-state CRF model at the word level.
Resumo:
Existing devices for communicating information to computers are bulky, slow to use, or unreliable. Dasher is a new interface incorporating language modelling and driven by continuous two-dimensional gestures, e.g. a mouse, touchscreen, or eye-tracker. Tests have shown that this device can be used to enter text at a rate of up to 34 words per minute, compared with typical ten-finger keyboard typing of 40-60 words per minute. Although the interface is slower than a conventional keyboard, it is small and simple, and could be used on personal data assistants and by motion-impaired computer users.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.